Math, asked by sushantdhanwani, 4 months ago

Using the identity (x + a) (x + b) = x² + (a + b) x + ab to find the following products:-

1. (2p + 7) (2p - 5)

Answers

Answered by brainlyofficial11
3

Answer :-

 \\   \boxed{ \bold{(x + a)(x + b) =  {x}^{2} + (a + b)x + ab }}

here, in (2p + 7) (2p - 5)

  • x = 2p
  • a = 7
  • b = -5

 \bold{: \implies  {(2p)}^{2}  + (7 - 5)2p + (7  \times  - 5)}  \\  \\  \bold{: \implies 4 {p}^{2} + 2(2p) - 35  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies 4 {p}^{2} + 4p  - 35 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

so, the answer is 4p² + 4p - 35

Answered by ManishShah98
2

1. (2p + 7) (2p - 5) \\ formula = (x + a) (x  -  b) = x² + (a  -  b) x + (a)(-b) \\ 2 {p}^{2}  + (7 - 5)x + (7)( - 5) \\ 2 {p}^{2}  + 7p - 5p - 35 \\ 2 {p}^{2}  + 2p - 35 \:  \:  \: answer

Similar questions