Math, asked by Anonymous, 7 months ago

Using the Prime factorisation method , Find which of the following numbers are perfect squares .

________________________________________________

1. 768
2. 400
3. 630
4. 9025
5. 784
________________________________________________


Thanks ❤️

⭕ spammers stay away !!

Answers

Answered by 1700
1

Answer:

Hi for this you need to find the answer in such a way that they both are same and they together product the above any number

Answered by Anonymous
26

\gray{ \underbrace{ \textbf{ \red{ \textsf{Question : }}}}}

Using the Prime factorisation method , Find which of the following numbers are perfect squares.

1. 768

2. 400

3. 630

4. 9025

5. 784

\gray{ \underbrace{ \textbf{ \green{ \textsf{Solution : }}}}}

Q.1. 768

Using the prime factorisation

\sf{ \underline{ 2\mid{768}}}  \\  \sf { \underline{ 2\mid{384}}} \\  \sf{ \underline{ 2\mid{192}}}  \\  \sf{ \underline{ 2\mid{96}}} \:  \:   \\  \sf{ \underline{ 2\mid{48 \:  \: }}} \\  \sf{ \underline{ 2\mid{24 \:  \: }}} \\  \sf{ \underline{ 2\mid{12 \:  \: }}} \\  \sf{ \underline{ 2\mid{6 \:  \:  \:  \:   }}} \\  \sf{ \underline{ 3\mid{3 \:  \:  \:  \:  }}} \\  \sf{{ {1}}}

After taking the L. C. M. of 768 prime factors we get :

\\ \sf { \underline{2 \times 2 }} \:  \times { \underline{ 2 \times 2}} \times { \underline{ 2 \times 2}} \times{ \underline{ 2 \times 2}} \times \bf 3

➠ Prime factors = 2 × 2 × 2 × 2 √ 3

➠ Prime factors = 16√3

{ \underline{ \boxed{ \red{ \bf{Hence, \:  it \:  is  \: not  \: a \:  perfect  \: square. ❌ }}}}}

Q.2. 400

Using prime factorisation method :

\sf{ \underline{2 \mid{400}}} \\  \sf{ \underline{2 \mid{200}}} \\  \sf{ \underline{2 \mid{100}}} \\  \sf{ \underline{2 \mid{50 \:  \: }}} \\  \sf{ \underline{5\mid{25 \:  \:  }}} \\  \sf{ \underline{5 \mid{5 \: \:  \:  \:  }}} \\ \sf \:  \:  1

After taking the L. C. M. of 768 prime factors we get :

\\ \sf { \underline{2 \times 2 }} \:  \times { \underline{ 2 \times 2}} \times { \underline{ 5 \times 5}}

➠ Prime factors = 2 × 2 × 5

➠ Prime factors = 20

{ \underline{ \boxed{ \green{ \bf{Hence \: it \: is \: a \: perfect \: square ☑ }}}}}

Q.3. 630

Using prime factorisation method :

\sf{ \underline{ 2\mid{630}}} \\  \sf{ \underline{ 3\mid{315}}} \\  \sf{ \underline{ 3\mid{105 }}} \\  \sf{ \underline{ 5\mid{35 \:  \: }}} \\  \sf{ \underline{ 7\mid{7 \:  \:  \:  \:  }}} \\  \:  \sf 1

Prime factors we get :

\sf  \to \bf 2 \times  \sf{ \underline{3 \times 3}} \times \bf 5 \times 7 \\  \sf \to  \sqrt[3]{2 \times 5 \times 7}  \\

3√2 × 5 × 7 can't be the perfect for 630.

{ \underline{ \boxed{ \red{ \bf{Hence \: it \: is \: not \: a \: perfect \: square ❌}}}}}

Q.4. 9025

Using prime factorisation method :

\sf{ \underline{ 5\mid{9025}}} \\  \sf{ \underline{ 5\mid{1085}}} \\  \sf{ \underline{ 19\mid{361 \:  \:  \:  \: }}} \\  \sf{ \underline{19 \mid{19  \:  \:  \:  \:  \: \: }}} \\ 1

Prime factors we get :

\sf{ \underline{5 \times 5}}  \times { \underline{19 \times 19}}

➠ 19 × 5

95 will be the square of 9025.

{ \underline{ \boxed{ \green{ \bf{hence \: it \: is \: a \: perfect \: square ☑ }}}}}

Q.5. 784

Using prime factorisation method :

\sf{ \underline{ 2\mid{784}}}  \\  \sf{ \underline{ 2\mid{392}}}  \\  \sf{ \underline{ 2\mid{196}}}  \\  \sf{ \underline{ 2\mid{98 \:\: \: }}}  \\  \sf{ \underline{ 7\mid{49 \:   \:  }}}  \\  \sf{ \underline{ 1\mid{7 \: \:\: \:  }}}  \\  \sf \:  1

Prime factors we get :

\sf{ \underline{2 \times 2}} \times{ \underline{2 \times 2}} \times { \underline{7 \times 7}}

➠ 2 × 2 × 7

28 can be the perfect no. for 784

{ \underline{ \boxed{ \green{ \bf{Hence \: it \: is \: a \: perfect \: square ☑ }}}}}

\green{ \underbrace{ \textbf{ \textsf{Required \:answer  :   }}}} \\ { \underline{ \boxed{ \textbf{ \textsf{Perfect \: squares \:no. are = \:400,\: 9025,\: 784 ☑}}}}}

Similar questions