using the principle of mathematical induction prove that (2n+7)<(n+3)^2
Answers
Answered by
5
Let P(n): (2n + 7) < (n + 3)²
When = 1, LHS = (2 × 1 + 7) = 9 and RHS = (1 + 3)² = 4² = 16.
Clearly, 9 < 16.
Thus, P(n) is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then
P(k): (2k + 7) < (k + 3)². ... (i)
Now, 2(k + 1) + 7 = (2k + 7) + 2
< (k + 3)² + 2 = (k² + 6k + 11) [using(i)]
< (k² + 8k + 16) = (k + 4)² = (k + 1 + 3)².
P(k + 1): 2(k + 1) + 7 < (k + 1 + 3)².
P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by Principle of Mathematical Induction, P(n) is true for all n ∈ N.
hope this helps ...good luck
When = 1, LHS = (2 × 1 + 7) = 9 and RHS = (1 + 3)² = 4² = 16.
Clearly, 9 < 16.
Thus, P(n) is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then
P(k): (2k + 7) < (k + 3)². ... (i)
Now, 2(k + 1) + 7 = (2k + 7) + 2
< (k + 3)² + 2 = (k² + 6k + 11) [using(i)]
< (k² + 8k + 16) = (k + 4)² = (k + 1 + 3)².
P(k + 1): 2(k + 1) + 7 < (k + 1 + 3)².
P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by Principle of Mathematical Induction, P(n) is true for all n ∈ N.
hope this helps ...good luck
Similar questions
Math,
8 months ago
Political Science,
8 months ago
History,
8 months ago
Hindi,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Chemistry,
1 year ago