Math, asked by SUDHEV6510, 1 year ago

using the properties of determinants , prove
| 1 x x+1 |
| 2x x(x-1) x(x+1) |
| 3x(1-x) x(x-1)(x-2) x(x+1)(x-1)|
= 6x​2(1-x2)

Answers

Answered by MaheswariS
2

\textbf{To prove:}

\left|\begin{array}{ccc}1&x&x+1\\2x&x(x-1)&x(x+1)\\3x(1-x)&x(x-1)(x-2)&x(x+1)(x-1)\end{array}\right|=6x^2(1-x^2)

\text{Consider}

\left|\begin{array}{ccc}1&x&x+1\\2x&x(x-1)&x(x+1)\\3x(1-x)&x(x-1)(x-2)&x(x+1)(x-1)\end{array}\right|

\text{Take x and x+1 common from $C_2$ and $C_3$ respectively}

=x(x+1)\left|\begin{array}{ccc}1&1&1\\2x&x-1&x\\3x(1-x)&(x-1)(x-2)&x(x-1)\end{array}\right|

\text{Take x-1 common from $R_3$}

=x(x+1)(x-1)\left|\begin{array}{ccc}1&1&1\\2x&x-1&x\\-3x&x-2&x\end{array}\right|

=x(x+1)(x-1)\left|\begin{array}{ccc}1&0&0\\2x&-(x+1)&-x\\-3x&4x-2&4x\end{array}\right| C_2\implies\,C_2-C_1\;\;C_3\implies\,C_3-C_1

\text{Expanding along $R_1$ we get}

=x(x+1)(x-1)[-4x(x+1)+x(4x-2)]

=x(x^2-1)[-4x^2-4x+4x^2-2x]

=x(x^2-1)[-6x]

=6x^2(1-x^2)

\therefore\bf\left|\begin{array}{ccc}1&x&x+1\\2x&x(x-1)&x(x+1)\\3x(1-x)&x(x-1)(x-2)&x(x+1)(x-1)\end{array}\right|=6x^2(1-x^2)

Find more:

1.Prove that:det(x+y x x, 5x+4y 4x 2x, 10x+8y 8x 3x ) =x^3

https://brainly.in/question/4612859

2.The sum of the real roots of the equation | x 6 1 |

| 2 3x (x - 3)| = 0 | 3 2x (x = 2)|

is equal to (A) -4 (B) 0

(C) 6 (D) 1

https://brainly.in/question/16074720

Similar questions