Math, asked by nikhilindoria, 1 year ago

using the quadratic formula,solve the equation a^2 b^2 x^2 -(4b^4 - 3a^4)x - 12a^2 b^2= 0

Answers

Answered by ashk02
9
I hope this answer helps you...
Attachments:
Answered by Anonymous
32

GIVEN:-

  \bf \: •Equation  \: a²b²x²-(4b²-3a²)x-12a²b²

TO FIND OUT:-

 \rm \bf \: •  \: Roots \: of \: the \: given \: equation=?

SOLUTION:-

 \rm \bf \: comparing \: the \: given \: equation \: with  \: Ax²+Bx+C=0,we \:  get

 \bf  \: A=a {}^{2} b {}^{2} ,B=-(4b⁴-3a)=3a²-4b²

 \bf \: And  \: C=-12a²b²

 \bf \: D=(B²-4AC)

 \bf \:=(3a⁴-4b⁴)²-4a²b²(-12a²b²)</u><u>\</u><u>\</u><u>

 \bf = 9a⁸+16b⁸ - 24a⁴b⁴+48a⁴b⁴

 \bf \:  = 9a {}^{2}  + 16b {}^{2}  + 24a {}^{4} b {}^{4}

 \bf = (3a {}^{4} ) {}^{2}  +( 4b {}^{4} ) {}^{2} 2  \times 3a {}^{4}  \times4b {}^{4}

 \boxed{ \bf = (3a {}^{4}  + 4b {}^{4} )  \geqslant  0}

 \bf \: Hence  \: ,the  \: given  \: equation  \: has \: real \: roots \: ,given \: by</u><u>\</u><u>\</u><u>

 \bf \alpha  =  </u><u>\</u><u>large</u><u> \frac{ - B +  \sqrt{D} }{2A}</u><u>

 \bf \:  =   \large\frac{(4b⁴-3a²)+(3a⁴+4b⁴)} {2a²b²}</u><u>

  \bf= \large  \frac{8b {}^{4} }{2a {}^{2}b {}^{2}  }  =  \frac{4b {}^{2} }{a {}^{2} }

 \bf\:a nd   \: \beta= \large \frac{-B- \sqrt{D} }{2A}

 \bf = \large  \frac{(4b {}^{4}  - 3a {}^{4} ) - (3a {}^{4} + 4b {}^{4}  )}{2a {}^{2}b {}^{2}  }

 \bf \:  =  \large \frac{ - 6a {}^{4} }{2a {}^{2}b {}^{2}  }  =  \frac{ - 3a {}^{2} }{b {}^{2} }

 \bf \: Hence  \: roots  \: of  \: the  \: given  \: equation  \: are

 \boxed{ \bf \:  \frac{4b {}^{2} }{a {}^{2} } and \:  \frac{ - 3a {}^{2} }{b {}^{2} } }

Similar questions