Math, asked by sayanipaul0008, 5 hours ago

Using the
the
inverse of the matrices
elementary transformation
transformation find the
E
2 0 -1
5 1 0
0 1 3​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given matrix is

 \purple{\rm :\longmapsto\:\begin{gathered}\bf \left[\begin{array}{ccc}2&0& - 1\\5& 1&0\\ 0&1&3\end{array}\right]\end{gathered}}

Let assume that

\bf :\longmapsto\:A \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}2&0& - 1\\5& 1&0\\ 0&1&3\end{array}\right]\end{gathered}

Using Elementary Row Transformation Method, we have

\rm :\longmapsto\:A = IA

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}2&0& - 1\\5& 1&0\\ 0&1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OPR_1 \:  \to \: 3R_1

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}6&0& - 3\\5& 1&0\\ 0&1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}3&0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OPR_1 \:  \to \: R_1 -R_2

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& - 1& - 3\\5& 1&0\\ 0&1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}3& - 1&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OPR_2 \:  \to \: R_2 -5R_1

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& - 1& - 3\\0& 6&15\\ 0&1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}3& - 1&0\\ - 15& 6&0\\ 0&0&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OPR_2 \:  \to \dfrac{1}{6}  \: R_2

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& - 1& - 3\\0& 1& \dfrac{5}{2} \\ 0&1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}3& - 1&0\\ -  \dfrac{5}{2} & 1&0\\ 0&0&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OP \: R_1 \:  \to \: R_1 + R_2

\rm :\longmapsto\:OP \: R_3 \:  \to \: R_3  -  R_2

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& 0& - \dfrac{1}{2} \\0& 1& \dfrac{5}{2} \\ 0&0& \dfrac{1}{2} \end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc} \dfrac{1}{2} & 0&0\\ -  \dfrac{5}{2} & 1&0\\  \dfrac{5}{2} & - 1&1\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OPR_3 \:  \to \: 2R_3

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& 0& - \dfrac{1}{2} \\0& 1& \dfrac{5}{2} \\ 0&0& 1 \end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc} \dfrac{1}{2} & 0&0\\ -  \dfrac{5}{2} & 1&0\\  5 & - 2&2\end{array}\right]\end{gathered}A

\rm :\longmapsto\:OP \: R_1 \:  \to \: R_1 + \dfrac{1}{2} R_3

\rm :\longmapsto\:OP \: R_2 \:  \to \: R_2  -  \dfrac{5}{2} R_3

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1& 0& 0 \\0& 1& 0 \\ 0&0& 1 \end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}3& - 1& 1\\ - 15& 6& - 5\\ 5& - 2&2\end{array}\right]\end{gathered}A

We know,

\underbrace{ \boxed{ \bf \:  {AA}^{ - 1} =  {A}^{ - 1}A = I}}

So, On comparing with this, we get

 \red{\rm :\longmapsto\: {A}^{ - 1} = \begin{gathered}\sf \left[\begin{array}{ccc}3& - 1& 1\\ - 15& 6& - 5\\ 5& - 2&2\end{array}\right]\end{gathered}}

Additional Information :-

Let A and B are square matrices of order n, then

\rm :\longmapsto\: |AB|  =  |A|  \:  |B|

\rm :\longmapsto\: |kA|  =  {k}^{n} |A|

\rm :\longmapsto\: | {A}^{T} |  =  |A|

\rm :\longmapsto\: |I|  = 1

\rm :\longmapsto\: |adj \: A|  =  { |A| }^{n - 1}

\rm :\longmapsto\: |A \: adj \: A|  =  { |A| }^{n}

\rm :\longmapsto\: | {A}^{ - 1} |  = \dfrac{1}{ |A| }

Similar questions