Using which one of the following methods can you open the find &replica diolge
Answers
Answer:
† Question :-
Prove that ;
\begin{gathered} \boxed{ \boxed{ \rm \frac{sin \theta + tan\theta}{cos\theta} = tan\theta(1 + sec\theta) }} \bigstar\\ \end{gathered}
cosθ
sinθ+tanθ
=tanθ(1+secθ)
★
\large \dag† Step by step Solution :-
Taking Right Hand Side (RHS)
\begin{gathered} \: \: \: \: \rm tan\theta(1 + sec\theta) \\ \\ \end{gathered}
tanθ(1+secθ)
\begin{gathered} \small \rm = tan\theta \bigg(1 + \frac{1}{cos\theta} \bigg) \: \: \bigg\{\red{\because \sf sec\theta = \frac{1}{cos\theta} } \bigg\} \\\\ \end{gathered}
=tanθ(1+
cosθ
1
){∵secθ=
cosθ
1
}
\begin{gathered} \rm = tan\theta + \frac{tan\theta}{cos\theta} \\ \\ \end{gathered}
=tanθ+
cosθ
tanθ
\begin{gathered} \small \rm = \frac{sin\theta}{cos\theta} + \frac{tan\theta}{cos\theta} \: \: \bigg\{\red{\because \sf tan\theta = \frac{ sin\theta}{cos\theta} } \bigg\} \\\\ \end{gathered}
=
cosθ
sinθ
+
cosθ
tanθ
{∵tanθ=
cosθ
sinθ
}
⏩ Taking cosθ as LCM ;
\begin{gathered}\\ \large \pmb{ \purple{\rm = \frac{sin\theta + tan\theta}{cos\theta} } }\\ \\ \end{gathered}
=
cosθ
sinθ+tanθ
=
cosθ
sinθ+tanθ
which is your Left Hand Side (LHS)
\large \pink \maltese \: \: \underline{\orange{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}