using (x+4) (x+b) =x^2+(ab) x+ab find (b) (4x+5) (4x+1) (c) (xy-3) (xy-5)
Answers
Answered by
0
☆ (4x+5)(4x+1)
=(4x)^2+(5+1)×4x + 5×1
=16x^2+24x+5
☆ (xy-3) (xy-5)
=(xy)^2 + {-3+(-5)} ×xy + (-3×-5)
=x^2y^2 + (-8)×xy + 15
=x^2y^2 -8xy + 15
Answered by
0
(4x+5)(4x+1)
=(4x)^2+(5+1)×4x + 5×1
=16x^2+24x+5
(xy-3) (xy-5)
=(xy)^2 + {-3+(-5)} ×xy + (-3×-5)
=x^2y^2 + (-8)×xy + 15
=x^2y^2 -8xy + 15
Similar questions