Math, asked by manu30shukla, 11 months ago

V 3+v2
V3-v2


plzz. bbbhgdjtsjzzkzjzfkzgkgzjzjgzkfzkgz​

Answers

Answered by 12thpáìn
3

{~~~~\implies ~~~ \sf \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }   }

  • On rationalizing the denominator term

{~~~~\implies ~~~ \sf \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }    \times \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  } }

{ ~~~~\implies ~~~\sf \dfrac{ {(\sqrt{3} +  \sqrt{2})}^{2}   }{{ ({\sqrt{3} )}^{2}  - ( \sqrt{2} )}^{2}  }   }

{ ~~~~\implies ~~~\sf \dfrac{ {{(\sqrt{3} ) }^{2} +  \sqrt{2})}^{2}   + 2 \times  \sqrt{3} \times  \sqrt{2}   }{ 3 - 2}   }

{ ~~~~\implies ~~~\sf \dfrac{ 3+  2   + 2  \sqrt{6}  }{ 1}   }

{~~~~\implies ~~~  \boxed{\bf 5 + 2 \sqrt{6} }} \\  \\

{~~~ ~~~ \sf \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }     \bf= 5 + 2 \sqrt{6} } \\  \\  \\  \\

  • \begin{gathered}\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\gray{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab )\\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\\ \end{gathered}
Answered by madukasundi157
8

**✿❀ Question ❀✿**

 \sqrt{3}  -  \:    \sqrt{2}  \\  \sqrt{3 \: } \:  +  \:  \sqrt{2}

**✿❀ Answer ❀✿**

➡ Solution in the attachment photo.

✳ Don't forget to thanks

✳ Mark as brainlist.

Attachments:
Similar questions