Math, asked by samarpitasinha18, 4 days ago

V3+ tan40° + tan80° = V3 tan40°. tan 80°​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

We know,

\rm :\longmapsto\:120\degree  = 80\degree  + 40\degree

So,

\rm :\longmapsto\:tan120\degree  =tan( 80\degree  + 40\degree )

We know,

\rm :\longmapsto\:\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }}

So, using this identity, we get

\rm :\longmapsto\:tan(180\degree  - 60\degree ) = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\: - tan(60\degree ) = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\: -  \sqrt{3}  = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\:tan80\degree  + tan40\degree  =  -  \sqrt{3} +  \sqrt{3}tan80\degree tan40\degree

\rm\implies \:\:tan80\degree  + tan40\degree + \sqrt{3} =  \sqrt{3}tan80\degree tan40\degree

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }}

\boxed{\tt{ sin(x -  y) = sinx \: cosy \:  -   \: siny \: cosx \: }}

\boxed{\tt{ cos(x + y) = cosx \: cosy \:   -  \: sinx \: siny \: }}

\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:    +  \: sinx \: siny \: }}

\boxed{\tt{ tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \: }}

\boxed{\tt{ cot(x + y) =  \frac{cotx \: coty \:  -  \: 1}{coty \:  +  \: cotx}  \: }}

\boxed{\tt{ cot(x -  y) =  \frac{cotx \: coty \:  +   \: 1}{coty \:  -  \: cotx}  \: }}

Answered by OoAryanKingoO78
2

Answer:

\large\underline{\bf{Question-}}

V3+ tan40° + tan80° = V3 tan40°. tan 80°

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

\large\underline{\bf{Solution-}}

We know,

\rm :\longmapsto\:120\degree  = 80\degree  + 40\degree

So,

\rm :\longmapsto\:tan120\degree  =tan( 80\degree  + 40\degree )

We know,

\rm :\longmapsto\:\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }}

So, using this identity, we get

\rm :\longmapsto\:tan(180\degree  - 60\degree ) = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\: - tan(60\degree ) = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\: -  \sqrt{3}  = \dfrac{tan80\degree  + tan40\degree }{1 - tan80\degree  \: tan40\degree }

\rm :\longmapsto\:tan80\degree  + tan40\degree  =  -  \sqrt{3} +  \sqrt{3}tan80\degree tan40\degree

\rm\implies \:\:tan80\degree  + tan40\degree + \sqrt{3} =  \sqrt{3}tan80\degree tan40\degree

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }}

\boxed{\tt{ sin(x -  y) = sinx \: cosy \:  -   \: siny \: cosx \: }}

\boxed{\tt{ cos(x + y) = cosx \: cosy \:   -  \: sinx \: siny \: }}

\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:    +  \: sinx \: siny \: }}

\boxed{\tt{ tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \: }}

\boxed{\tt{ cot(x + y) =  \frac{cotx \: coty \:  -  \: 1}{coty \:  +  \: cotx}  \: }}

\boxed{\tt{ cot(x -  y) =  \frac{cotx \: coty \:  +   \: 1}{coty \:  -  \: cotx}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions