Math, asked by harikrishnanr4823, 1 month ago

Vaishali came across some interesting numbers. She describes them as the numbers of the type 'n' such that nx²y³ where x and y are natural numbers. If she adds all such numbers less than 3000, then which of the following number will she get?

53955

4501500

11025

5794

no fake answers, it will be reported​

Answers

Answered by amitnrw
2

Given :  Vaishali came across some interesting numbers.

She describes them as the numbers of the type 'n' such that n

x²y³ where x and y are natural numbers.

If she adds all such numbers less than 3000,

To Find :   Sum

Solution:

x²y³  <  3000,

x² < 3000

Hence x can vary from 1  to  54

y can vary from  1 to 14

y = 1  => x from  1 to 54  

∑n²  = n(n + 1)(2n + 1)/6

Sum = 1 (  54 (54 + 1) ( 2 * 54 + 1) / 6)  =  53955

y = 2  => x from  1 to 19

Sum = 2³ (   19 (19 + 1) ( 2 * 19 + 1) / 6)  =  19760

Similarly find till  14³

3³( 1² + 2² + _____ + 10²) =  10395

4³( 1² + 2² + _____ + 6²) =  5824

5³( 1² + 2² + 3² +4²) =  3750

6³( 1² + 2² + 3²) =  3024

7³( 1² + 2² ) =  1715

8³( 1² + 2² ) =  2560

9³( 1² + 2² ) =  3645

10³( 1² ) =  1000

11³( 1²   ) =  1331

12³( 1²) =  1728

13³( 1² ) =  2197

14³( 1²) = 2744

Sum of all these numbers = 113628

But these numbers have repeated  numbers

64      =  1³ * 8²  =   4³  * 1²

256  =    1³ * 16²  =  4³  * 2²

576  =    1³ *24²  =   4³  * 3²

729   =    1³ *27²  =  9³  * 1²

1024  =    1³ *32²  =  4³  * 4²

1600  =    1³ *40²  =  4³  * 5²  

2304  =    1³ *48²  =  4³  * 6²  

2916   =    1³ *54²  =  9³  * 2²  

512     =    2³ *8²  =  8³  * 1²  

2048  =    2³ * 16²  =  8³  * 2²  

1728   =     3³ * 8²  =  12³  * 1²

Adds upto = 13757

Hence total = 113628 - 13757 =  99871

Learn More:

Identify the ordered pairs that result in a quadrilaterala) (1.-1), (2,-2 ...

brainly.in/question/17225822

How many ordered pairs of (m,n) integers satisfy m/12=12/m ...

brainly.in/question/13213839

Similar questions