Math, asked by anshikaagarwal118, 1 year ago

value of A if tanA = 2 +√3

Answers

Answered by anu24239
8

\huge\mathfrak\red{Answer}

LETS PLAY WITH

TRIGONOMETRIC

FUNCTIONS......

tan \alpha  = 2 +  \sqrt{3}  \\  \\ multiply \: and \: divide \: by \: 2 \\  \\  \tan \alpha  =  \frac{4 + 2 \sqrt{3} }{2}  \\  \tan \alpha  =  \frac{ {(1)}^{2}  + ( { \sqrt{3} })^{2} + 2 \times  \sqrt{3}  }{( { \sqrt{3} })^{2} -  ({1}^{2} ) }  \\  \\  \tan \alpha  =  \frac{ {(1 +  \sqrt{3} } )^{2} }{( \sqrt{3}  + 1)( \sqrt{3 } - 1) }  \\  \\  \tan \alpha  =  \frac{1 +  \sqrt{3} }{ \sqrt{3}  - 1}  \\  \\ take \:  \sqrt{3}  \: common \\  \\  \tan \alpha  =  \frac{ \sqrt{3}( \frac{1}{ \sqrt{3} }  + 1 )}{ \sqrt{3} (1 -  \frac{1}{ \sqrt{3} }) }  \\  \\ finlly \: we \: get \\  \\  \tan \alpha  =  \frac{1 +  \frac{1}{ \sqrt{3} } }{1 -  \frac{1}{ \sqrt{3} } }  \\  \\  \tan \alpha  =  \frac{ \tan45 +  \tan30 }{1 - ( \tan45)( \tan30) }  \\  \\ tan \alpha  =  \tan(45 + 30)  \\  \\ tan \alpha  =  \tan75 \\  \\  \alpha  = 75

WHEN YOU ARE DEALING WITH TANGENT FUNCTION THEN PLEASE TRY TO CONVERT THE FUNCTION IN SINE OR COS OR CONVERT IT INTO ADDITION PROPERTIES OR FORMULA OF TANGENT.

Similar questions