Math, asked by anamta381, 4 days ago

value of cos⁴a+ cos²asin²a+sin²a/cos²a+cos²asin²a+sin⁴a​

Answers

Answered by LaeeqAhmed
1

  \frac{\cos⁴a+  \cos²a \sin²a+ \sin²a}{ \cos²a+ \cos²a \sin²a+ \sin⁴a}

 \implies  \frac{\cos²a(\cos²a+   \sin²a)+ \sin²}{ \cos²a+ (\cos²a + \sin²a)\sin²a}

  \purple{\sf{since : }}

 \red{ \boxed{\sin²a + \cos²a = 1}}

\implies  \frac{\cos²a(1)+ \sin²}{ \cos²a+ (1)\sin²a}

\implies  \frac{\cos²a+ \sin²}{ \cos²a+ \sin²a}

\implies  \frac{1}{ 1}

 \orange{\therefore  1}

Similar questions