Math, asked by Spinzo212, 10 months ago

value of expression
 log_{2}( \sqrt[5]{2 \times  \sqrt[3]{2 \sqrt{2} } } )
is:​

Answers

Answered by Anonymous
8

Given :

log₂ [  ⁵√{ 2 × ∛( 2√2 ) ]

Note : we will use ⁿ√a = a^( 1/n ) more frequently while solving this question

By simplifying the given expression we get ,

\sf  \Rightarrow log_2 \sqrt[5]{2 \times \sqrt[3]{2\sqrt{2} } }

\sf  \Rightarrow log_2 \sqrt[5]{2 \times \sqrt[3]{2 \times 2^{ 1 / 2 }} }

Using law of exponents a^m × a^n= a^( m + n )

\sf  \Rightarrow log_2 \sqrt[5]{2 \times \sqrt[3]{2^{1 + ( 1 / 2) }} }

\sf  \Rightarrow log_2 \sqrt[5]{2 \times \sqrt[3]{ 2^{ 3 / 2 }} }

\sf  \Rightarrow log_2 \  \sqrt[5]{2 \times \bigg( 2^{ 3 / 2 } \bigg)^{1/3}} }

Since ( a^m )^n = a^( mn )

\sf  \Rightarrow log_2 \  \sqrt[5]{2 \times \bigg( 2\bigg)^{(3/2) \times ( 1/3)}} }

\sf  \Rightarrow log_2 \  \sqrt[5]{2 \times \bigg( 2\bigg)^{1/2}} }

\sf  \Rightarrow log_2 \  \sqrt[5]{ \bigg( 2\bigg)^{1+( 1/2)}} }

Using law of exponents a^m × a^n= a^( m + n )

\sf  \Rightarrow log_2 \  \sqrt[5]{ \bigg( 2\bigg)^{3/2}} }

\sf  \Rightarrow log_2 \  \Bigg[ \bigg( 2\bigg)^{3/2}} \Bigg] ^{1/5}

Since ( a^m )^n = a^( mn )

\sf  \Rightarrow log_2 \   \bigg( 2\bigg)^{(3/2) \times (1/5)}}

\sf  \Rightarrow log_2 \   \bigg( 2\bigg)^{3/10}}

Using Power rule log a^m = m.log a we get,

\sf  \Rightarrow \dfrac{3}{10} \times log_2 \   2

Since log_a a = 1

\sf  \Rightarrow \dfrac{3}{10}

∴ the value of the given expression is 3/10 or 0.3.

Similar questions