Math, asked by arnavlokhande, 1 year ago

Value of i^-888

Please help me ​

Answers

Answered by charliejaguars2002
7

Answer:

\longrightarrow\Large\boxed{1}

Step-by-step explanation:

GIVEN:

i⁻⁸⁸⁸ (find the value.)

To solve this problem, first you have to find the value of i⁻⁸⁸⁸ to isolate by the i from one side of the equation.

SOLUTIONS:

First, thing you do is exponent rule.

\Large\boxed{\textnormal{EXPONENTS RULE FORMULA}}

\displaystyle \mathsf{A^-^B=\frac{1}{A^B} }

Solve.

\displaystyle \mathsf{\frac{1}{i^{888}}}

\mathsf{\textnormal{EXPONENT RULES}}

\mathsf{A^B^C=(A^B)^C}

\displaystyle \mathsf{i^{888}=(i^2)^4^4^4}

Rewrite as a fraction.

\displaystyle \mathsf{\frac{1}{(i^2)^{444}}}

Used imaginary number line rule.

\Large\boxed{\textnormal{IMAGINARY NUMBER LINE RULES FORMULA}}

\mathsf{i^2=-1}

\displaystyle\mathsf{\frac{1}{(-1)^{444}}}}

\mathsf{EXPONENT\quad RULES}

\displaystyle \mathsf{(-A)^N=A^N}}

\displaystyle\mathsf{(-1)^4^4^4=1^4^4^4}

Rewrite as a fraction again.

\displaystyle \mathsf{\frac{1}{1^{444}}}

Solve with exponent and divide the numbers from left to right. (Simplify/ to find the answer.)

\displaystyle \mathsf{1^4^4^4=1}

Divide.

\displaystyle \mathsf{\frac{1}{1}=\boxed{\mathsf{1}}} }

\Large\boxed{\mathsf{1}}

In conclusion, the value of i⁻⁸⁸⁸ is 1, which is our answer.

Answered by xItzKhushix
10

Explanation:-

 \huge \boxed{i^{-888}=1}

Given :-

\iota^{-888}

To find :-

It's required value.

Solution:-

As we know the iota is an imaginary number whose value is.

 \iota = \sqrt{-1}

  • Similarly The value of :-

 \boxed{\iota^4 = 1 }

  • Let evulate this :-

 \iota^{-888}

  •  \boxed{a^{-1} = \dfrac{1}{a}}

  • by using this we get,

 \dfrac{1}{\iota^{888}}

 \dfrac{1}{(\iota^{4})^{222}}

 \dfrac{1}{1}

 1

hence,

The required value is 1.

Similar questions