Math, asked by Mansii3464, 8 months ago

Value of sin15?please help me to get answer

Answers

Answered by Asterinn
2

Answer:

\sqrt{3}-1/2\sqrt{2}

Step-by-step explanation:

sin15 = sin( 45 - 30)

now, Sin( A-B) = sinA cosB - cosA sinB

therefore, Sin(45-30) = sin45 cos 30 - cos45 sin30

= 1/\sqrt{2} *\sqrt{3} /2 - 1/\sqrt{2} *1/2

\sqrt{3}-1/2\sqrt{2}

Answered by Anonymous
1

Step-by-step explanation:

solution:-

i) sin 15

we can write

sin 15= sin(45-30)

now use this formula

sin(A-B)= sinA×cosB- cosA ×sinB

now we can write

sin(45-30)= sin45×cos30-cos45×sin30

value of

 \sin(45 \degree)  =  \frac{1}{ \sqrt{2} }

 \cos(30 \degree)  =  \frac{ \sqrt{3} }{2}

 \cos(45 \degree)  =  \frac{1}{ \sqrt{2} }

 \sin(30 \degree)  =  \frac{1}{2}

put the value

( \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2} ) - ( \frac{1}{ \sqrt{2} }  \times  \frac{1}{2} )

 \frac{ \sqrt{3} }{2 \sqrt{2} } - \frac{1}{2 \sqrt{2} }

 \frac{( \sqrt{3} - 1) }{2 \sqrt{2} }

value of sin15

 \huge{ \frac{( \sqrt{3}  - 1)}{2 \sqrt{2} } }

Similar questions