Math, asked by satyamkachawa, 8 hours ago

varify the aerobric identity a3+b3=(a+b) (a2-ab + b2)​

Answers

Answered by Anonymous
3

Appropriate Question :-

Verify the algebraic identity ;

a³ + b³ = ( a + b ) ( a² - ab + b² )

Solution :-

Before starting the question , let's recall some algebraic identity which will help in the proof of the given identity ;

{ \quad \leadsto \quad { \pmb { \orange { \bf { (a+b)³ = a³+b³+3ab(a+b)}}}}}

{ \quad \leadsto \quad { \pmb { \blue { \bf { (a+b)² = a² + b² + 2ab }}}}}

______________________________________

So , the identity that we have is ;

 {\quad \leadsto \quad \sf (a+b)³ = a³ + b³ + 3ab(a+b)}

can be further written as ;

 { : \implies \quad \sf a³ + b³ + 3ab(a+b) = ( a + b )³}

Can be more further written as ;

 { : \implies \quad \sf a³ + b³ = ( a + b )³ - 3ab ( a + b ) }

Can again written as ;

 { : \implies \quad \sf a³ + b³ = \underbrace{( a + b )}( a + b ) ( a + b ) - 3ab \underbrace{( a + b )} }

Take ( a + b ) common;

 { : \implies \quad \sf a³ + b³ = ( a + b ) \bigg\{ ( a + b ) ( a + b ) - 3ab \bigg\}}

Can be written as ;

 { : \implies \quad \sf a³ + b³ = ( a + b ) \bigg\{ ( a + b )² - 3ab \bigg\}}

Using the above provided identity we have ;

 { : \implies \quad \sf a³ + b³ = ( a + b ) ( a² +b²+2ab - 3ab )}

 { : \implies \quad \sf a³ + b³ = ( a + b ) ( a² +b²-ab  )}

 { : \implies \quad \bf a³ + b³ = ( a + b ) (a² -ab +b² )}

 \quad { \bigstar { \underline { \boxed { \pmb { \bf { \red { \underbrace { \therefore a³ + b³ = ( a + b ) (a² -ab +b² ) }}}}}}}}{\bigstar}\quad \qquad

Similar questions