Physics, asked by Rahilmaqbool, 11 months ago

velocity of a particle is ✓180-4x where x is position then what is acceleration of particle??​

Answers

Answered by Anonymous
35

Correct Question

Velocity of a particle is given by the following relation,find the acceleration of the particle :

 \tt \: v(x) =  \sqrt{180 - 4x}  \:  \:  {ms}^{ - 1}

Solution

The acceleration of the particle is 0.5 m/s²

Given

Velocity of the particle is given as :

 \tt \: v(x) =  \sqrt{180 - 4x}  \:  \:  {ms}^{ - 1}

We Know that,

 \tt \: a =  \dfrac{dv}{dt}  -  -  -  -  -  -  - (1)

Also  \tt \: t =  \dfrac{x}{v}

Putting t in equation (1),

 \implies \:  \tt \: a =  \dfrac{dv}{d( \frac{x}{v} )}  \\  \\  \implies \: \boxed{ \boxed{   \tt \: a = v \:  \dfrac{dv}{dx} }}

Now,

 \sf \: a \:  = v \times  \dfrac{dv}{dx}  \\  \\  \longrightarrow \:  \sf \:  \: a =  \sqrt{180 - 4x}  \times  \dfrac{d( \sqrt{180 - 4x} )}{dx}  \\  \\  \longrightarrow \:  \sf \: a =  \sqrt{180 - 4x}  \times  \dfrac{d(180 - 4x) {}^{ \frac{1}{2} } }{dx}  \\  \\  \longrightarrow \:  \sf \: a =  \cancel{\sqrt{180 - 4x}}  \times  \dfrac{1}{2 \cancel{( \sqrt{180 - 4x})}} \times \dfrac{d(180 - 4x)}{dx} \\  \\  \huge{ \longrightarrow \:   \boxed{ \boxed{\sf \: a = - 2  {ms}^{ - 2} }}  } \:

Answered by HappiestWriter012
8

Given,

Velocity of a particle is related to its position as,

 \blue{ \boxed{ \pink{v =  \sqrt{180 - 4x} }}}

It can also be written as,

180 -  {v}^{2}  = 4x

Acceleration is the rate of change of velocity with respect to time.

 \boxed{ \boxed{a =  \frac{dv}{dt}}}

So, Acceleration of the particle is,

 \displaystyle \frac{dv}{dt}  =  \frac{d}{dt} ( \sqrt{180 - 4x} ) \\  \\ a =  \frac{1}{2 \sqrt{180 - 4x} }  \times  \frac{d}{dt} (180 - 4x) \\  \\ a =  \frac{1}{2 \sqrt{180 - 4x} }  \times  - 4( \frac{dx}{dt} ) \\  \\ a =  \frac{1}{2 \sqrt{180 - 4x} }  \times  - 4v \\  \\ a =  - 2 \times  \frac{ \sqrt{180 - 4x} }{ \sqrt{180 - 4x} }  \\  \\ a =  - 2m {s}^{ - 2}

Therefore, The acceleration of the particle is - 2m/s².

Similar questions