Math, asked by llSarcasticBalikall, 1 month ago

verified answer required​

Attachments:

Answers

Answered by Anonymous
48

Answer:

{\large{\underline{\underline{\bf{\purple{Question \:  : - }}}}}}

{\underline{\underline{\sf{\red{Prove \:  That :-}}}}}

 \begin{gathered}  \dashrightarrow{\sf{\sqrt{\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}} = 0.318}} \end{gathered}

\small{\underline{\underline{\sf{\red{Where  :-}}}}}

  • \bf{\green{\sqrt{3}}} = 1.732
  • \bf{\green{\sqrt{2}}} = 1.414

\begin{gathered}\end{gathered}

\large{\underline{\underline{\bf{\purple{Solution \: : - }}}}}

\begin{gathered}  \dashrightarrow{\sf{\sqrt{\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\red \divideontimes Here, we have provided that 3 = 1.732 and 2 = 1.414. So, we put the given values in equation.

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{\sqrt{\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{\sqrt{\dfrac{1.732 - 1.414}{{1.732 + 1.414}}} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{\sqrt{\dfrac{0.318}{3.146}} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{\sqrt{\cancel{\dfrac{0.318}{3.146}}} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{ \sqrt{0.101} = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\sf{0.318 = 0.318}} \end{gathered}

\begin{gathered}\end{gathered}

\begin{gathered}  \dashrightarrow{\underline{\underline{\sf{ \red{LHS = RHS }}}}} \end{gathered}

\begin{gathered}\end{gathered}

{\bigstar{\overline{\underline{\boxed{\textsf{\textbf{\green{Hence Proved !}}}}}}}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\purple{Learn \: More \:  : - }}}}}}

★ For any two real numbers a and b, a, b ≠ 0, and for any two positive integers, m and n.

\red \divideontimes If a be any non - zero rational number, then

  • ➠ a^0 = 1

\red \divideontimes If a be any non - zero rational number and m,n be integer, then

  • ➠ (a^m)^n = a^mn

\red \divideontimes If a be any non - zero rational number and m be any positive integer, then

  • ➠ a^-m = 1/a^m

\red \divideontimes If a/b is a rational number and m is a positive integer, then

  • ➠ (a/b)^m = a^m/b^m

\red \divideontimes For any Integers m and n and any rational number a, a ≠ 0

  • ➠ a^m × a^n = a^m+n

\red \divideontimes For any Integers m and n for non - zero rational number a,

  • ➠ a^m ÷ a^n = a^m-n

\red \divideontimes If a and b are non - zero rational numbers and m is any integer, then

  • ➠ (a+b)^m = a^m × b^m

Similar questions