Math, asked by shreevpagare24, 4 months ago

Verifiy rolles theorem for f(x)=log(x^2 + 2) - log^3 in [ -1,1]

Answers

Answered by mathdude500
1

\large\underline\purple{\bold{Solution :-  }}

\tt \:  f(x) =  log( {x}^{2} + 2 )  -  log(3)  \: in \: [- 1, 1]

Step :- 1

\tt \:   \longrightarrow \:as \: x \:  \epsilon \: [- 1, 1] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt\implies \: \: \tt \:   {x}^{2}  + 2 > 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt\implies \: log( {x}^{2} + 2 )  \: is \: defined

\tt\implies \:f(x) \: is \: continuous \: in \: [- 1, 1]

Step :- 2

Differentiate f(x) w. r. t. x, we get

\tt \:   \longrightarrow \:f'(x) \:  = \dfrac{1}{ {x}^{2} + 2 } (2x) - 0

\tt \:   \longrightarrow \:f'(x) = \dfrac{2x}{ {x}^{2}  + 2}

\tt\implies \:f(x) \: is \: differentiable \: in \: (- 1, 1)

Step :- 3

\tt \:   \longrightarrow  \: f( - 1) =  log(1 + 2)  -  log(3)  = 0 \\ \tt \:   \longrightarrow \:f(1) =  log(1 + 2) -  log(3)  = 0 \:  \:  \:  \\ \tt\implies \: \: f( - 1) = f(1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☆ This implies, Rolle's Theorem is applicable. Therefore, there exist atleast one real number 'c' belongs to (- 1, 1) such that f'(c) = 0.

\tt\implies \:\dfrac{2c}{ {c}^{2} + 2 }  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \\ \bf\implies \:c \:  = 0 \:  \epsilon \: (- 1, 1)

Similar questions