Math, asked by jyotikoli2005, 8 months ago

Verify associativity of multiplication of rational numbers for the following:
a) 1/2 , 3/4 , 5/6          b) 3/7 , 5/6 , 14/ 2​

Answers

Answered by uttara29
33

verify both by associative property

a*(b*c) = (a*b)*c

1) 1/2*(3/4*5/6)= 1/2*15/24

= 15/48

(1/2*3/4)*5/6= 3/8*5/6

=15/48

hence verified

similarly solve part 2

Answered by smithasijotsl
1

Answer:

Step-by-step explanation:

Given set of rational numbers are

a)) \frac{1}{2} , \frac{3}{4} , \frac{5}{6}         b) \frac{3}{7} , \frac{5}{6} , \frac{14}{2}

To verify the associativity of multiplication

Recall the concepts

If a,b,c are any three rational numbers, then the associative property  of multiplication of rational numbers are given by

a(bc) = (ab)c

Solution

a) \frac{1}{2} , \frac{3}{4} , \frac{5}{6}

Here let us take a = \frac{1}{2}, b = \frac{3}{4} and c = \frac{5}{6}

bc = \frac{3}{4} X\frac{5}{6}

= \frac{5}{8}

a(bc) = \frac{1}{2} X \frac{5}{8} = \frac{5}{16}

ab = \frac{1}{2}X\frac{3}{4}

=\frac{3}{8}

(ab)c = \frac{3}{8} X\frac{5}{6} =  \frac{5}{16}

Hence the associative property of multiplication a(bc) = (ab)c is proved

b)  \frac{3}{7} , \frac{5}{6} , \frac{14}{2}

Here let us take a = \frac{3}{7}, b =  \frac{5}{6}  and c =\frac{14}{2}

bc = \frac{5}{6}} X\frac{14}{2}

= \frac{35}{6}

a(bc) =\frac{3}{7}X \frac{35}{6}  =   \frac{5}{2}

ab =\frac{3}{7} X \frac{5}{6} =\frac{5}{14}

(ab)c = \frac{5}{14} X\frac{14}{2} =  \frac{5}{2}

Hence the associative property of multiplication a(bc) = (ab)c is verified.

#SPJ2

Similar questions