Math, asked by bhagavan07021950, 6 months ago

Verify (i) x^3 + y^3 = (x + y) (x^2 - xy + y^2)​

Answers

Answered by RADJKRISHNA
2

Hi friend,

here is your answer

please follow me

Answer:

(x+y)^3 = (x+y)^2 (x+y)

x^3 + y^3 + 3x^2y + 3xy^2 = (x+y) (x^2+2xy+y^2)

x^3 + y^3 = (x+y)(x^2+2xy+y^2) -3x^2y -3xy^2

x^3 + y^3 = (x+y)(x^2+2xy+y^2)

hope it helps you and you understood

if helps please follow me

Answered by vikaskumar2000
2

Step-by-step explanation:

 {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} ) \\ for \: lhs -  >  \\ (x + y)( {x}^{2}  - xy +  {y}^{2} ) \\  =  > x \times ( {x}^{2}  - xy +  {y}^{2} ) + y \times ( {x}^{2}  - xy +  {y}^{2} ) \\  =  >  {x}^{3}  -  {x}^{2} y + x {y}^{2}  +  {x}^{2} y - x {y}^{2}  +  {y}^{3}  \\  =  >  {x}^{3}  +  {y}^{3}  = rhs \\ so \\ =  >  rhs= lhs \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  h.p.

Similar questions