Math, asked by ksvrishasree, 10 months ago

Verify if 1/2 and -3/2 are zeroes of polynomial 8x^3 - 4x^2 - 18x + 9. If yes then factorise the polynomial.

Answers

Answered by krishna4019
1

Step-by-step explanation:

Just put the two zeroes in the above equation if they are zero it will give you 0. If not given roots are not correct.

Answered by rajeswaridande96
3

 let \: \\ p(x) =  {8x}^{3}  -  {4x}^{2}  - 18x + 9 \\ p( \frac{1}{2} ) = 8( \frac{1}{2} ) {}^{3}  - 4( \frac{1}{2} ) {}^{2} - 18( \frac{1}{2}  ) + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 8(  \frac{1}{8} ) - 4( \frac{1}{4} ) - 18( \frac{1}{2} ) + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 1 - 1 - 9 + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 0 \\ p( \frac{1}{2} ) = 0 \\ p(  \frac{ - 3}{2} ) = 8( \frac{ - 3}{2} ) {}^{3}  - 4( \frac{ - 3}{2} ) {}^{2}  - 18( \frac{ - 3}{2} ) + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 8( \frac{ - 27}{8} ) - 4( \frac{ - 9}{4} ) - 18( \frac{ - 3}{2} ) + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  - 27  + 9  + 27 + 9 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 18 \\ p( \frac{ - 3}{2} ) \: is \: not \: equal \: to \: zero

p(1/2) =0 , so 1/2 is a zero of the

given polynomial. But, p(-3/2) is not equal to zero. So, -3/2 is not a zero of the polynomial.

Hope this helps you mate........

Please mark it as brainliest......!!!!!!!

Similar questions