Math, asked by abratmughal9261, 10 months ago

Verify if x=2/root 3 and x=-2/3 are zero polynomials of g (x)=3xsquare-2

Answers

Answered by Isighting12
1

Answer:

Step-by-step explanation:

g(x) = 3x^{2} - 2

x = 2\sqrt{3}

g(2\sqrt{3}) = 3(2\sqrt{3} )^{2} - 2

           = 3(12) - 2

           = 36 - 2

           = 34

Since g(x) \neq 0

Therefore 2\sqrt{3} is not a zero of g(x)

x = \frac{-2}{3}

g(\frac{-2}{3}) = 3(\frac{-2}{3} )^{2} - 2

         =  3(\frac{4}{9}) -2

          = \frac{4}{3}  - 2

           =  \frac{4 - 6}{3}

         =  \frac{-2}{3}

Since g(x) \neq 0

Therefore \frac{-2}{3} is not a zero of g(x)

Similar questions