Math, asked by bakshiamit167, 16 days ago

Verify rank nullity theorem for the linear
transformation T : R^3 → R^3
defined by :
T(x, y, z) = (x + 2y – z, y + z, x + y – 2z)

Answers

Answered by pandasoumitra2011
2

Answer:

Let \alpha=(x_1,y_1,z_1)\isin R^3,\beta=(x_2,y_2,z_2)\isin R^3α=(x

1

,y

1

,z

1

)∈R

3

,β=(x

2

,y

2

,z

2

)∈R

3

Then T(\alpha)=(2x_1+y_1-z_1,x_1+z_1)T(α)=(2x

1

+y

1

−z

1

,x

1

+z

1

)

T(\beta)=(2x_2+y_2-z_2,x_2+z_2)T(β)=(2x

2

+y

2

−z

2

,x

2

+z

2

)

\alpha+\beta=(x_1+x_2,y_1+y_2,z_1+z_2)α+β=(x

1

+x

2

,y

1

+y

2

,z

1

+z

2

)

T(\alpha+\beta)=(2(x_1+x_2)+(y_1+y_2)-(z_1+z_2),(x_1+x_2)+(z_1+z_2))T(α+β)=(2(x

1

+x

2

)+(y

1

+y

2

)−(z

1

+z

2

),(x

1

+x

2

)+(z

1

+z

2

))

=((2x_1+y_1-z_1)+(2x_2+y_2-z_2),(x_1+z_1)+(x_2+z_2))=((2x

1

+y

1

−z

1

)+(2x

2

+y

2

−z

2

),(x

1

+z

1

)+(x

2

+z

2

))

=T(\alpha)+T(\beta)=T(α)+T(β)

Also let c\isin R.c∈R. Then c\alpha=(cx_1,cy_1,cz_1)cα=(cx

1

,cy

1

,cz

1

)

T(c\alpha)=(2cx_1+cy_1-cz_1,cx_1+cz_1)T(cα)=(2cx

1

+cy

1

−cz

1

,cx

1

+cz

1

)

=c(2x_1+y_1-z_1,x_1+z_1)=c(2x

1

+y

1

−z

1

,x

1

+z

1

)

=cT(\alpha)=cT(α)

Thus T(\alpha+\beta)=T(\alpha)+T(\beta)T(α+β)=T(α)+T(β) for all \alpha,\beta\isin R^3α,β∈R

3

and T(c\alpha)=cT(\alpha)T(cα)=cT(α) for all c\isin Rc∈R and \alpha\isin R^3.α∈R

3

.

Hence TT is a linear transformation.

KKerer T=T= {(x,y,z)\isin R^3:T(x,y,z)=(0,0)(x,y,z)∈R

3

:T(x,y,z)=(0,0)}

Let (x_1,y_1,z_1)\isin(x

1

,y

1

,z

1

)∈ KerKer TT

Then 2x_1+y_1-z_1=0,x_1+z_1=0.2x

1

+y

1

−z

1

=0,x

1

+z

1

=0.

From second equation we get x_1=-z_1x

1

=−z

1

Let x_1=kx

1

=k (say) , then z_1=-kz

1

=−k

Now from first equation we get , y_1=-3ky

1

=−3k

Therefore (x_1,y_1,z_1)=k(1,-3,-1)=c(-1,3,1)(x

1

,y

1

,z

1

)=k(1,−3,−1)=c(−1,3,1), c\isin Rc∈R

Let \alpha=(-1,3,1)α=(−1,3,1). Then KerKer T=T=linear span of \alpha=Lα=L{\alphaα } and dimdim KerKer T=1.T=1.

ImTImT is the linear span of the vectors T(\alpha_1),T(\alpha_2),T(\alpha_3)T(α

1

),T(α

2

),T(α

3

) where {\alpha_1,\alpha_2,\alpha_3α

1

2

3

} is any basis of R^3R

3

.

{\epsilon_1=(1,0,0),\epsilon_2=(0,1,0),\epsilon_3=(0,0,1)ϵ

1

=(1,0,0),ϵ

2

=(0,1,0),ϵ

3

=(0,0,1)} is a basis of R^3R

3

.

Now T(\epsilon_1)=(2,1),T(\epsilon_2)=(1,0),T(\epsilon_3)=(-1,1).T(ϵ

1

)=(2,1),T(ϵ

2

)=(1,0),T(ϵ

3

)=(−1,1).

ImT=LImT=L{(2,1),(1,0),(-1,1)(2,1),(1,0),(−1,1) }

These vectors are linearly dependent in R^2.R

2

.

But the subset {(2,1),(1,0)(2,1),(1,0)} is linearly independent in R^2R

2

.

\therefore ImT=L∴ImT=L{(2,1),(1,0)(2,1),(1,0) }

Therefore dimdim ImT=2.ImT=2.dim KerT+KerT+ dimdim ImTImT =dim=dim R^3R

3

Here, dimdim KerT+dimKerT+dim ImT=1+2=3ImT=1+2=3.

dimdim R^3=3R

3

=3

Therefore TT satisfies the Rank-Nullity theorem.

Similar questions