Math, asked by jordan4415, 8 months ago

verify rolles theorem for the function f(x)=2x*3+x*2-4x-2

Answers

Answered by devipen1707
2

Answer:

Step-by-step explanation:

The given function f(x) = 2x^{3} + x^{2} - 4x - 2 ...(i)       ( when \frac{-1}{2}≤x≤\sqrt{2} )

∴f(\frac{-1}{2})=2(\frac{-1}{8})+\frac{1}{4}-4(\frac{-1}{2})-2 = -1/4 +1/4+2-2 =0

∴f(\sqrt{2}) = 2.((\sqrt{2}) ^{3})+(\sqrt{2}) ^{2}-4.\sqrt{2}-2 = 4.\sqrt{2}+2-4.\sqrt{2}-2=0

f(\frac{-1}{2})=f(\sqrt{2})

Diff. (i) w.r. to 'x' both sides, we get

f'(x) = 6x^{2} + 2x - 4 replace with 'c' then

∴ f'(c) = 6c^{2} + 2c - 4

By Rolle's Theorems,

∴ 6c^{2} + 2c - 4 =0

6c^{2} + 6c - 4c - 4 = 0

6c(c + 1) - 4(c + 1) = 0

(c + 1)(6c - 4) = 0

∴c≠-1 ,c=  \frac{4}{6}=\frac{2}{3}

∴c ∈[\frac{-1}{2},\sqrt{2}]

Hence, verified Rolle's theorem.

Similar questions