Verify : sin60 = 2tan30/1+tan²30
Answers
Answered by
5
(2 tan 30)/(1+tan^2 30) = sin 60?
LHS = (2 tan 30)/(1+tan^2 30)
= (2tan30)/ (1+ sin^2 30/ cos^2 30)
= (2tan30)/ (sin^2 30 + Cos^2 30)/ cos ^2 30
= (2tan30) / (1/cos^2 30) [Because sin^2 theta + cos^2 theta =1]
= 2tan30*cos^2 30/1
= (2sin30/cos30) *cos^2 30
= 2sin 30* cos 30 [ because 2(sin theta) * (Cos theta) = sin 2 theta )
= sin 2*30
= sin60 = RHS proved. Thank you.
Mark me as a Brainliest.
LHS = (2 tan 30)/(1+tan^2 30)
= (2tan30)/ (1+ sin^2 30/ cos^2 30)
= (2tan30)/ (sin^2 30 + Cos^2 30)/ cos ^2 30
= (2tan30) / (1/cos^2 30) [Because sin^2 theta + cos^2 theta =1]
= 2tan30*cos^2 30/1
= (2sin30/cos30) *cos^2 30
= 2sin 30* cos 30 [ because 2(sin theta) * (Cos theta) = sin 2 theta )
= sin 2*30
= sin60 = RHS proved. Thank you.
Mark me as a Brainliest.
imteyazhaidry1121:
Thank you very much
Similar questions
Music,
6 months ago
Math,
6 months ago
Math,
1 year ago
Math,
1 year ago
India Languages,
1 year ago
India Languages,
1 year ago