Math, asked by bbjkjgg, 3 months ago

verify
x =  \frac{3}{4}  \:  \:  y =  \frac{5}{6}  \:  \: z =  \frac{ - 7}{8}

Answers

Answered by abhishek917211
2

x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

verified

Answered by sandipthete3
6

Step-by-step explanation:

\begin{gathered}x = (y + z) = (x + y) + z \\ \\ x = (y + z) = \frac{3}{4} + ( \frac{5}{6} + \frac{ - 7}{8} ) \\ \\ = \frac{3}{4} + ( \frac{20 + ( - 21)}{24} ) \\ \\ = \frac{3}{4} + ( \frac{ - 1}{24} ) \\ \\ = \frac{3}{4} + \frac{ - 1}{24} \\ \\ = \frac{18 + ( - 1)}{24} \\ \\ = \frac{17}{24} \\ \\ (x + y ) + z = ( \frac{3}{4} + \frac{5}{6} ) + \frac{ - 7}{8} \\ \\ = ( \frac{9 + 10}{12} ) + \frac{ - 7}{8} \\ \\ = \frac{19}{12} + \frac{ - 7}{8} \\ \\ = \frac{38 + ( - 21)}{24} \\ \\ = \frac{38 - 21}{24} \\ \\ = \frac{17}{24} \\ \\ x + (y + z) = (x + y) + z \\ \\\end{gathered}

x=(y+z)=(x+y)+z

x=(y+z)=

4

3

+(

6

5

+

8

−7

)

=

4

3

+(

24

20+(−21)

)

=

4

3

+(

24

−1

)

=

4

3

+

24

−1

=

24

18+(−1)

=

24

17

(x+y)+z=(

4

3

+

6

5

)+

8

−7

=(

12

9+10

)+

8

−7

=

12

19

+

8

−7

=

24

38+(−21)

=

24

38−21

=

24

17

x+(y+z)=(x+y)+z

verified \fbox \red a \fbox n \fbox s \fbox w \fbox e \boxed r[/tex]

x =  \:  \frac{3}{4} \\ x = 3 \div 4 \\ x = 0.75

 y =  \frac{5}{6}  \\ y = 5 \div 6 \\ y = 0.63 \\

z =  \frac{7}{8}  \\ z = 7 \div 8 \\ z = 6.89

Similar questions