verify
Answers
verified
Step-by-step explanation:
\begin{gathered}x = (y + z) = (x + y) + z \\ \\ x = (y + z) = \frac{3}{4} + ( \frac{5}{6} + \frac{ - 7}{8} ) \\ \\ = \frac{3}{4} + ( \frac{20 + ( - 21)}{24} ) \\ \\ = \frac{3}{4} + ( \frac{ - 1}{24} ) \\ \\ = \frac{3}{4} + \frac{ - 1}{24} \\ \\ = \frac{18 + ( - 1)}{24} \\ \\ = \frac{17}{24} \\ \\ (x + y ) + z = ( \frac{3}{4} + \frac{5}{6} ) + \frac{ - 7}{8} \\ \\ = ( \frac{9 + 10}{12} ) + \frac{ - 7}{8} \\ \\ = \frac{19}{12} + \frac{ - 7}{8} \\ \\ = \frac{38 + ( - 21)}{24} \\ \\ = \frac{38 - 21}{24} \\ \\ = \frac{17}{24} \\ \\ x + (y + z) = (x + y) + z \\ \\\end{gathered}
x=(y+z)=(x+y)+z
x=(y+z)=
4
3
+(
6
5
+
8
−7
)
=
4
3
+(
24
20+(−21)
)
=
4
3
+(
24
−1
)
=
4
3
+
24
−1
=
24
18+(−1)
=
24
17
(x+y)+z=(
4
3
+
6
5
)+
8
−7
=(
12
9+10
)+
8
−7
=
12
19
+
8
−7
=
24
38+(−21)
=
24
38−21
=
24
17
x+(y+z)=(x+y)+z
verified \fbox \red a \fbox n \fbox s \fbox w \fbox e \boxed r[/tex]