verify that 1,-1 and -3 are the zeroes of the cubic polynomial x³+3x²-3 and check the relationship between zeroes and coefficients.
Answers
Answer:
Let given cubic polynomial be
p(x) = x³ + 3x² - x - 3
i ) If x = 1 , then
p(1) = 1³ + 3(1)² - 1 - 3 = 1 + 3 - 1 - 3 = 0
ii ) If x = -1 , then
p(-1) = ( -1 )³ + 3( -1 )² - ( -1 ) - 3
= -1 + 3 + 1 - 3
= 0
iii ) If x = -3 , then
p(-3) = (-3)³ + 3(-3)²-(-3)-3
= -27 + 27 + 3 - 3
= 0
Therefore ,
p(1) = p(-1) = p(-3) = 0.
So, 1 , -1 , -3 are zeroes of the given
cubic polynomial p(x).
Compare the coefficients of given
cubic polynomial x³+3x²-x-3 with
ax³+bx²+cx+d , we get
a = 1 , b = 3 , c = -1 , d = -3
Let the zeroes of the cubic polynomial
p(x) are p = 1 , q = -1 , r = -3
Now ,
p + q + r = 1 - 1 - 3 = -3 = -b/a
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1
= -1 + 3 - 3
= -1 = c/a
pqr = 1(-1)(-3) = 3 = -d/a
Answer:
Let given cubic polynomial be
Let given cubic polynomial bep(x) = x³ + 3x² - x - 3
Let given cubic polynomial bep(x) = x³ + 3x² - x - 3i ) If x = 1 , then
p(1) = 1³ + 3(1)² - 1 - 3 = 1 + 3 - 1 - 3 = 0
p(1) = 1³ + 3(1)² - 1 - 3 = 1 + 3 - 1 - 3 = 0ii ) If x = -1 , then
cubic polynomial p(x)Compare the coefficients of given
cubic polynomial x³+3x²-x-3 with
ax³+bx²+cx+d , we get
a = 1 , b = 3 , c = -1 , d = -3
a = 1 , b = 3 , c = -1 , d = -3Let the zeroes of the cubic polynomial
p(x) are p = 1 , q = -1 , r = -3
p(x) are p = 1 , q = -1 , r = -3Now ,
p(x) are p = 1 , q = -1 , r = -3Now ,p + q + r = 1 - 1 - 3 = -3 = -b/a
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1= -1 + 3 - 3
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1= -1 + 3 - 3= -1 = c/a
pqr = 1(-1)(-3) = 3 = -d/a
Step-by-step explanation:
✌✌