Verify that 1, –1 and –3 are the zeros of the cubic polynomial x³ + 3x² – x – 3 and check the relationship between zeros and the coefficients.
Answers
Answered by
30
Cubic:
Where, a,b,c,d are coefficients
Let p,q and r are the zeros of the polynomial.
Then, p+q+r= -b/a
And, pqr= -d/a
pq+qr+rp = c/a
i)
1+3-1-3=0
-1+3+1-3=0
-27+27+3-3=0
Verified.
Now,p+q+r= 1-1-3=-3=-b/a
pqr= 1*(-1)*(-3)=3=-d/a
pq+qr+rp= 1*(-1)+(-1)*(-3)+(-3)*(1)=-1+3-3=1=c/a
Hence,verified
Hope it helps
Thanks
Answered by
70
Solution :
Let given cubic polynomial be
p(x) = x³ + 3x² - x - 3
i ) If x = 1 , then
p(1) = 1³ + 3(1)² - 1 - 3 = 1 + 3 - 1 - 3 = 0
ii ) If x = -1 , then
p(-1) = ( -1 )³ + 3( -1 )² - ( -1 ) - 3
= -1 + 3 + 1 - 3
= 0
iii ) If x = -3 , then
p(-3) = (-3)³ + 3(-3)²-(-3)-3
= -27 + 27 + 3 - 3
= 0
Therefore ,
p(1) = p(-1) = p(-3) = 0.
So, 1 , -1 , -3 are zeroes of the given
cubic polynomial p(x).
Compare the coefficients of given
cubic polynomial x³+3x²-x-3 with
ax³+bx²+cx+d , we get
a = 1 , b = 3 , c = -1 , d = -3
Let the zeroes of the cubic polynomial
p(x) are p = 1 , q = -1 , r = -3
Now ,
p + q + r = 1 - 1 - 3 = -3 = -b/a
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1
= -1 + 3 - 3
= -1 = c/a
pqr = 1(-1)(-3) = 3 = -d/a
••••
Let given cubic polynomial be
p(x) = x³ + 3x² - x - 3
i ) If x = 1 , then
p(1) = 1³ + 3(1)² - 1 - 3 = 1 + 3 - 1 - 3 = 0
ii ) If x = -1 , then
p(-1) = ( -1 )³ + 3( -1 )² - ( -1 ) - 3
= -1 + 3 + 1 - 3
= 0
iii ) If x = -3 , then
p(-3) = (-3)³ + 3(-3)²-(-3)-3
= -27 + 27 + 3 - 3
= 0
Therefore ,
p(1) = p(-1) = p(-3) = 0.
So, 1 , -1 , -3 are zeroes of the given
cubic polynomial p(x).
Compare the coefficients of given
cubic polynomial x³+3x²-x-3 with
ax³+bx²+cx+d , we get
a = 1 , b = 3 , c = -1 , d = -3
Let the zeroes of the cubic polynomial
p(x) are p = 1 , q = -1 , r = -3
Now ,
p + q + r = 1 - 1 - 3 = -3 = -b/a
pq + qr + rp = 1(-1)+(-1)(-3)+(-3)1
= -1 + 3 - 3
= -1 = c/a
pqr = 1(-1)(-3) = 3 = -d/a
••••
Similar questions