Verify that 3, –1, – (1/3) are the zeros of the cubic polynomial p(x) = 3x3 – 5x2 – 11x – 3, and then verify the relationship between the zeros and the coefficients.
Answers
Answered by
43
Cubic:
Where, a,b,c,d are coefficients
Let p,q and r are the zeros of the polynomial.
Then, p+q+r= -b/a
And, pqr= -d/a
pq+qr+rp = c/a
i)
81-45-33-3=81-81=0
-3-5+11-3=11-11=0
Verified.
Now,p+q+r= 3-1-(1/3)=5/3=-b/a
pqr= 3*-1*(-1/3)=1=-d/a
pq+qr+rp= 3*(-1)+(-1)*(-1/3)+(-1/3)*(3)=-11/3=c/a
Hence,verified
Hope it helps
Thanks
With Regards
Answered by
127
Let given cubic polynomial be
p(x) = 3x³ - 5x² - 11x - 3
i ) If x = 3 , then
p(3) = 3(3)³ - 5(3)² - 11(3) - 3
= 81 - 45 - 33 - 3
= 81 - 81
= 0
ii ) If x = -1 , then
p(-1) = 3(-1)³ - 5(-1)² - 11(-1) - 3
= -3 - 5 + 11 - 3
= -11 + 11
= 0
iii ) If x = -1/3 , then
p(-1/3) = 3(-1/3)³ - 5(-1/3)² - 11(-1/3) - 3
= -3/27 - 5/9 + 11/3 - 3
= -1/9 - 5/9 + 11/3 - 3
= ( -1 - 5 + 33 - 27 )/9
= ( -33 + 33 )/9
= 0
Therefore ,
p(3) = p(-1) = p(-1/3) = 0 .
So, 3 , -1 , -1/3 are zeroes of given
cubic polynomial 3x³ - 5x² - 11x - 3 .
Compare the coefficients of given
cubic polynomial 3x³ - 5x² - 11x - 3
with ax³ + bx² + cx + d , we get
a = 3 , b = -5 , c = -11 , d = -3
Let the zeroes of the given cubic
polynomial p(x) are p =3 , q=-1, r=-1/3
Now ,
p+q+r = 3 - 1 - 1/3
= 2 - 1/3
= ( 6 - 1 )/3
= 5/3
= -b/a
pq+qr+rp
= 3(-1)+(-1)(-1/3)+(-1/3)(3)
= -3 + 1/3 - 1
= -4 + 1/3
= ( -12 + 1 )/3
= -11/3
= c/a
pqr = 3 × ( -1 ) × ( -1/3 )
= 1
=- d/a
•••••
p(x) = 3x³ - 5x² - 11x - 3
i ) If x = 3 , then
p(3) = 3(3)³ - 5(3)² - 11(3) - 3
= 81 - 45 - 33 - 3
= 81 - 81
= 0
ii ) If x = -1 , then
p(-1) = 3(-1)³ - 5(-1)² - 11(-1) - 3
= -3 - 5 + 11 - 3
= -11 + 11
= 0
iii ) If x = -1/3 , then
p(-1/3) = 3(-1/3)³ - 5(-1/3)² - 11(-1/3) - 3
= -3/27 - 5/9 + 11/3 - 3
= -1/9 - 5/9 + 11/3 - 3
= ( -1 - 5 + 33 - 27 )/9
= ( -33 + 33 )/9
= 0
Therefore ,
p(3) = p(-1) = p(-1/3) = 0 .
So, 3 , -1 , -1/3 are zeroes of given
cubic polynomial 3x³ - 5x² - 11x - 3 .
Compare the coefficients of given
cubic polynomial 3x³ - 5x² - 11x - 3
with ax³ + bx² + cx + d , we get
a = 3 , b = -5 , c = -11 , d = -3
Let the zeroes of the given cubic
polynomial p(x) are p =3 , q=-1, r=-1/3
Now ,
p+q+r = 3 - 1 - 1/3
= 2 - 1/3
= ( 6 - 1 )/3
= 5/3
= -b/a
pq+qr+rp
= 3(-1)+(-1)(-1/3)+(-1/3)(3)
= -3 + 1/3 - 1
= -4 + 1/3
= ( -12 + 1 )/3
= -11/3
= c/a
pqr = 3 × ( -1 ) × ( -1/3 )
= 1
=- d/a
•••••
Similar questions