Math, asked by claramary668, 5 months ago

verify that-1,-2- are the zeros of a cubic polynomial 2x3+7x2+7x+2 and then verify the relationship between the zeros and the coefficients​

Answers

Answered by EliteZeal
62

Correct question

 \:\:

Verify that -1,-2,-1/2 are the zeros of a cubic polynomial 2x³+7x²+7x+2 and then verify the relationship between the zeros and the coefficients

 \:\:

A n s w e r

 \:\:

G i v e n

 \:\:

  • Zeroes of a cubic polynomial are -1,-2,-1/2

  • The cubic polynomial is 2x³+7x²+7x+2

 \:\:

F i n d

 \:\:

  • Verify the zeroes of cubic polynomial and relation between the zeros and the coefficients

 \:\:

S o l u t i o n

 \:\:

\underline{\bold{\texttt{Verification for -1 :}}}

 \:\:

If -1 is a zero of the given cubic polynomial then it will give the result 0 at the end when the variable 'x' is replaced by it

 \:\:

So,

 \:\:

➜ 2x³ + 7x² + 7x + 2

 \:\:

➜ 2(-1)³ + 7(-1)² + 7(-1) + 2

 \:\:

➜ 2(-1) + 7(1) + 7(-1) + 2

 \:\:

➜ -2 + 7 - 7 + 2

 \:\:

➜ 0

 \:\:

  • Thus -1 is a zero of 2x³ + 7x² + 7x + 2

 \:\:

 \underline{\bold{\texttt{Verification for -2 :}}}

 \:\:

If -2 is a zero of the given cubic polynomial then it will give the result 0 at the end when the variable 'x' is replaced by it

 \:\:

So,

 \:\:

➜ 2x³ + 7x² + 7x + 2

 \:\:

➜ 2(-2)³ + 7(-2)² + 7(-2) + 2

 \:\:

➜ 2(-8) + 7(4) + 7(-2) + 2

 \:\:

➜ -16 + 28 - 14 + 2

 \:\:

➜ 30 - 30

 \:\:

➜ 0

 \:\:

  • Thus -2 is a zero of 2x³ + 7x² + 7x + 2

 \:\:

 \underline{\bold{\texttt{Verification for $\dfrac  { -1 } { 2 } $:}}}

 \:\:

If  \sf \dfrac { -1 } { 2 } is a zero of the given cubic polynomial then it will give the result 0 at the end when the variable 'x' is replaced by it

 \:\:

So,

 \:\:

➜ 2x³ + 7x² + 7x + 2

 \:\:

 \sf 2\bigg( \dfrac { -1 } { 2 } \bigg) ^3 + 7\bigg( \dfrac { -1 } { 2 } \bigg) ^2 + 7 \bigg( \dfrac { -1 } { 2 } \bigg) + 2

 \:\:

 \sf 2\bigg( \dfrac { -1 } { 8 } \bigg) + 7\bigg( \dfrac { 1 } { 4 } \bigg) + 7 \bigg( \dfrac { -1 } { 2 } \bigg) + 2

 \:\:

 \sf \dfrac { -1 } { 4 } + \bigg( \dfrac { 7 } { 4 } - \dfrac { 7 } { 2 } \bigg) + 2

 \:\:

 \sf \bigg(\dfrac{ - 1 + 7 - 14 + 8 } { 4 } \bigg)

 \:\:

 \sf \bigg(\dfrac { -15 + 15} { 4 } \bigg)

 \:\:

 \sf \bigg(\dfrac { 0} { 4 } \bigg)

 \:\:

➜ 0

 \:\:

  • Thus  \sf \dfrac { -1 } { 2 } is a zero of 2x³ + 7x² + 7x + 2

 \:\:

Relationship between zeroes and coefficient

 \:\:

 \underline{\bold{\texttt{For general cubic polynomial :}}}

 \:\:

  • For a cubic polynomial ax³ + bx² + cx + d

 \:\:

 \underline{\bold{\texttt{Sum of zeroes :}}}

 \:\:

 \bf \alpha + \beta + \gamma = -\dfrac { b } { a }  ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Product of zeroes :}}}

 \:\:

 \bf \alpha \times  \beta \times  \gamma = -\dfrac { d} { a }  ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{Sum of products of zeroes :}}}

 \:\:

 \bf \alpha \beta + \beta \gamma + \gamma \alpha = \dfrac { c} { a }  ⚊⚊⚊⚊ ⓷

 \:\:

Where,

 \:\:

  • α = 1st zero

  • β = 2nd zero

  • γ = 3rd zero

  • a = Coefficient of x³

  • b = Coefficient of x²

  • c = Coefficient of x

  • d = Constant term

 \:\:

 \underline{\bold{\texttt{For the given cubic polynomial :}}}

 \:\:

  • For the cubic polynomial 2x³ + 7x² + 7x + 2

 \:\:

═════════════════════════

 \underline{\bold{\texttt{Value Section :}}}

 \:\:

  • α = -1

  • β = -2

  • γ =  \sf \dfrac { -1 } { 2 } = -0.5

  • a = 2

  • b = 7

  • c = 7

  • d = 2

 \:\:

═════════════════════════

 \underline{\bold{\texttt{Sum of zeroes :}}}

 \:\:

Putting values from Value Section to ⓵

 \:\:

 \bf \alpha + \beta + \gamma = -\dfrac { b } { a }

 \:\:

 \sf -1 + -2 - 0.5 = -\dfrac { 7} { 2}

 \:\:

➜ -3.5 = -3.5

 \:\:

Verified

 \:\:

 \underline{\bold{\texttt{Product of zeroes :}}}

 \:\:

Putting values from Value Section to ⓶

 \:\:

 \bf \alpha \times  \beta \times  \gamma = -\dfrac { d} { a }

 \:\:

 \sf -1 \times -2 \times  -0.5 = -\dfrac { 2} { 2}

 \:\:

➜ -1 = -1

 \:\:

Verified

 \:\:

 \underline{\bold{\texttt{Sum of products of zeroes :}}}

 \:\:

Putting values from Value Section to ⓷

 \:\:

 \bf  \alpha \beta + \beta \gamma + \gamma \alpha = \dfrac { c} { a }

 \:\:

 \footnotesize{ \sf [-1(-2)] + [-2(-0.5)] + [-0.5(-1)] = \dfrac { 7} { 2}}

 \:\:

➜ 2 + 1 + 0.5 = 3.5

 \:\:

➜ 3.5 = 3.5

 \:\:

Verified

Similar questions