verify that 2 and -3 are the zeroes of the polynomial p (x) = x^2 +x - 6
Answers
Answered by
12
p(x)=x²+x-6
p(2)=(2)²+2-6
p(2)=4+2-6=0
p(-3)=(-3)²+(-3)-6
p(-3)=9-3-6
p(-3)=6-6
p(-3)=0
.·.2 and -3 are the zeroes of the polynomial p(x).
p(2)=(2)²+2-6
p(2)=4+2-6=0
p(-3)=(-3)²+(-3)-6
p(-3)=9-3-6
p(-3)=6-6
p(-3)=0
.·.2 and -3 are the zeroes of the polynomial p(x).
adityavarman:
lol similar answers.
Answered by
1
p(x)= x^2+x-6
p(2)= 2 ^ 2 + 2 - 6
p(2)= 4 - 2 - 6
p(2)= 4 - 4
therefore : p(2)=0
again;
p(x)= x^2+x-6
p(-3)= (-3)^2+(-3)-6
p(-3)= 9 - 3 - 6
p(-3)= 9 - 9
therefore : p(-3)= 0
p(2)= 2 ^ 2 + 2 - 6
p(2)= 4 - 2 - 6
p(2)= 4 - 4
therefore : p(2)=0
again;
p(x)= x^2+x-6
p(-3)= (-3)^2+(-3)-6
p(-3)= 9 - 3 - 6
p(-3)= 9 - 9
therefore : p(-3)= 0
Similar questions