Math, asked by kznxnxjd, 1 year ago

Verify that 3 is the zero of the cubic polynomial p(x) = 3x^3-5x^2-11x-3

Answers

Answered by adee1729
4
if 3 is a zero of the polynomial p(x),

then p(3) will be equal to zero.

then

p(3)=3×(3)³-5×(3)²-11×3-3,

p(3)=3×27-5×9-33-3,

p(3)=81-45-36,

p(3)=81-81,

p(3)=0,

since
p(3)=0,

therefore

3 is a zero of the polynomial.
Answered by Divyaalia
1
Hey mate, here is your answer -:)

__________________________

p(x) =  {3x}^{3}  -  {5x}^{2}  - 11x - 3 \\  \\ on \: putting \: x = 3 \\  \\ p(3) =  3 {(3)}^{3} - 5 {(3)}^{2}   - 11(3) - 3 \\   \:  \:  \:  \:  \:  \:  \:  \:  \: = 3(27) - 5(9) - 11(3) - 3 \\   \:  \:  \:  \:  \:  \:  \:  \:  \: = 81 - 45 - 33 - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 81 - 81 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   = 0

hence \: verified....


__________________________

HOPE it helps to you!!!
Similar questions