Math, asked by Rik11082007, 10 months ago

Verify that a× (b + c) = (a × b) + (a × c) : a= -4/5 ; b= -6/7 ; c= -2/3

Answers

Answered by Delta13
6

Given:

a =  -  \frac{4}{5}

b =  -  \frac{6}{7}

c =  -  \frac{2}{3}

To verify:

a×(b+c) = (a×b) + (a×c)

Solution:

PROPERTY USED Distributive Property

⇒ A(B+C) = AB + BC

We will simplify both the sides separately

LHS = a × (b + c)

   =  > -  \frac{4}{5}  \times  \left( -  \frac{6}{7}   + ( -  \frac{2}{3}) \right)

  =  > -  \frac{4}{5}  \times  \left( -  \frac{6}{7}  -  \frac{2}{3}  \right)

 =  >  -  \frac{4}{5}  \times  \left(  \frac{ - 6(3) - 2(7)}{21}  \right)

 =  >  -  \frac{4}{5}  \times  \left( \frac{ - 18 - 14}{21}  \right)

  =  > -  \frac{4}{5}  \times \left( -  \frac{32}{21}  \right)

  =  \boxed{\frac{128}{105} }

RHS = (a × b) + (a × c)

 =  > \left[-  \frac{4}{5}  \times (-  \frac{6}{7} )   \right] + \left[ - \frac{4}{5}   \times ( -  \frac{2}{3}) \right ]

 =  >  \frac{24}{35}  +  \frac{8}{15}

Taking LCM

  =  > \frac{72 + 56}{105}

 =  \boxed{ \frac{128}{105}}

LHS = RHS

Hence verified!!

Similar questions