Verify that the function y = a cos x + b sin x, where, a, b ∈ R is a solution of the differential equation d2y/dx2 + y=0...
Answers
Step-by-step explanation:
ᵗʰᵉ ᵍⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ʸ = ᵃ ᶜᵒˢ ˣ + ᵇ ˢⁱⁿ ˣ … (1)
ᵈⁱᶠᶠᵉʳᵉⁿᵗⁱᵃᵗⁱⁿᵍ ᵇᵒᵗʰ ˢⁱᵈᵉˢ ᵒᶠ ᵉᵠᵘᵃᵗⁱᵒⁿ (1) ʷⁱᵗʰ ʳᵉˢᵖᵉᶜᵗ ᵗᵒ ˣ,
ᵈʸ/ᵈˣ = – ᵃ ˢⁱⁿˣ + ᵇ ᶜᵒˢ ˣ
ᵈ2ʸ/ᵈˣ2 = – ᵃ ᶜᵒˢ ˣ – ᵇ ˢⁱⁿˣ
ˡʰˢ = ᵈ2ʸ/ᵈˣ2 + ʸ
= – ᵃ ᶜᵒˢ ˣ – ᵇ ˢⁱⁿˣ + ᵃ ᶜᵒˢ ˣ + ᵇ ˢⁱⁿ ˣ
= 0
= ʳʰˢ
ʰᵉⁿᶜᵉ, ᵗʰᵉ ᵍⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ᵃ ˢᵒˡᵘᵗⁱᵒⁿ ᵒᶠ ᵗʰᵉ ᵍⁱᵛᵉⁿ ᵈⁱᶠᶠᵉʳᵉⁿᵗⁱᵃˡ ᵉᵠᵘᵃᵗⁱᵒⁿ.
ʰᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
Step-by-step explanation:
The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65