Math, asked by mohitrack12300, 1 year ago

Verify that

x^3 + y^3 + z^3 - 3xyz= 1/2 (x+y+z)( (x-y) ^2 + ( y-z)^2 + (z-x)^2 )

Answers

Answered by BloomingBud
29
\mathbb{ SOLUTION } :

\bf {RHS}
=> \frac{1 }{2 } (x+y+z) { (x-y)² + (y-z)² + (z-x)² }

=> \frac{x }{ 2} + \frac{y }{2 } + \frac{ z}{2 } [ x² - 2xy + y² + y² - 2yz + z² + z² - 2xz + x² ]

=> \frac{x }{ 2} + \frac{y }{2 } + \frac{ z}{2 } [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]

=> \frac{x }{ 2} [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + \frac{y }{2 } [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + \frac{ z}{2 } [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]

=> \frac{x }{2} × 2x² + \frac{x }{ 2} × 2y² + \frac{x }{ 2} × 2z² - \frac{x }{ 2} × 2xy - \frac{x }{ 2} × 2yz - \frac{x }{ 2} × 2xz + \frac{y }{2 } × 2x² \frac{y }{ 2} × 2y² + \frac{y }{ 2} × 2z² - \frac{y}{ 2} × 2xy - \frac{y }{ 2} × 2yz - \frac{y}{ 2} × 2xz + \frac{z }{2} × 2x² + \frac{z }{ 2} × 2y² + \frac{z }{ 2} × 2z² - \frac{z }{ 2} × 2xy - \frac{z }{ 2} × 2yz - \frac{z }{ 2} × 2xz

=> x³ + xy² + xz² - x²y - xyz - x²z + x²y + y³ + yz² - xy² - y²z - xyz + x²z - y²z + z³ - xyz - yz² - xz²

=> x³ + y³ + z³ - 3xyz = \bf{ LHS}

\therefore \bf{ RHS} = \bf{ LHS}

Verified.

dheerajgodara58557: Thanks
Answered by Anonymous
11

  
Hey there !!


→ Prove that :-)

 \bf {x}^{3} + {y}^{3} + {z}^{3} - 3xyz = \frac{1}{2} (x + y + z)( {(x - y) }^{2} + {(y - z)}^{2} + {(z - x)}^{2} ).

→ solution :-)

Using Identity :-

=> x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - xy - yz - zx ).

▶ We can write RHS in this form :-

 \bf = \frac{1}{2} (x + y + z)(2 {x}^{2} + 2 {y}^{2} + 2 {z}^{2} - 2xy - 2yz - 2zx).

____________________________________

➡ Because ,  \bf = \frac{1}{\cancel{2}} (x + y + z) \times \cancel{2} ( {x}^{2} + {y}^{2} + {z}^{2} - xy - yz - zx).

= ( x + y + z )( x² + y² + z² -xy - yz - zx ).

____________________________________

 \bf = \frac{1}{2} (x + y + z)( {x}^{2} + {x}^{2} + {y}^{2} + {y}^{2} + {z}^{2} + {z}^{2} - 2xy - 2yx - 2zx).

=  \bf{ \frac{1}{2} }  ( x + y + z ) [ ( x² - 2xy + y² ) + ( y² - 2yz + z² ) + ( z² - 2zx + x² ) ].

 \bf { {x}^{3} + {y}^{3} + {z}^{3} - 3xyz = \frac{1}{2} (x + y + z)( {(x - y) }^{2} + {(y - z)}^{2} + {(z - x)}^{2} ). }

✔✔ Hence, it is proved ✅✅.

____________________________________

 \huge \boxed{ \mathbb{THANKS}}

 \huge \bf{ \#BeBrainly.}

dheerajgodara58557: Thank you very very much
Similar questions