Verify that
x^3 + y^3 + z^3 - 3xyz= 1/2 (x+y+z)( (x-y) ^2 + ( y-z)^2 + (z-x)^2 )
Answers
Answered by
29
:
=> (x+y+z) { (x-y)² + (y-z)² + (z-x)² }
=> + + [ x² - 2xy + y² + y² - 2yz + z² + z² - 2xz + x² ]
=> + + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]
=> [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]
=> × 2x² + × 2y² + × 2z² - × 2xy - × 2yz - × 2xz + × 2x² × 2y² + × 2z² - × 2xy - × 2yz - × 2xz + × 2x² + × 2y² + × 2z² - × 2xy - × 2yz - × 2xz
=> x³ + xy² + xz² - x²y - xyz - x²z + x²y + y³ + yz² - xy² - y²z - xyz + x²z - y²z + z³ - xyz - yz² - xz²
=> x³ + y³ + z³ - 3xyz =
=
Verified.
=> (x+y+z) { (x-y)² + (y-z)² + (z-x)² }
=> + + [ x² - 2xy + y² + y² - 2yz + z² + z² - 2xz + x² ]
=> + + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]
=> [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ] + [ 2x² + 2y² + 2z² - 2xy - 2yz - 2xz ]
=> × 2x² + × 2y² + × 2z² - × 2xy - × 2yz - × 2xz + × 2x² × 2y² + × 2z² - × 2xy - × 2yz - × 2xz + × 2x² + × 2y² + × 2z² - × 2xy - × 2yz - × 2xz
=> x³ + xy² + xz² - x²y - xyz - x²z + x²y + y³ + yz² - xy² - y²z - xyz + x²z - y²z + z³ - xyz - yz² - xz²
=> x³ + y³ + z³ - 3xyz =
=
Verified.
dheerajgodara58557:
Thanks
Answered by
11
Hey there !!
→ Prove that :-)
→ solution :-)
Using Identity :-
=> x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - xy - yz - zx ).
▶ We can write RHS in this form :-
____________________________________
➡ Because ,
= ( x + y + z )( x² + y² + z² -xy - yz - zx ).
____________________________________
= ( x + y + z ) [ ( x² - 2xy + y² ) + ( y² - 2yz + z² ) + ( z² - 2zx + x² ) ].
✔✔ Hence, it is proved ✅✅.
____________________________________
Similar questions