verify that x3+y3+z3-3xyz=1/2(x+y+z)[(x-y)2+(y-z)2+(z-x)2]
Attachments:
Answers
Answered by
1020
First We take R.H.S & use the Formula [( a-b)²= a²+b²-2ab] & simplify it then R.H.S becomes equal to L.H.S
R.H.S
⇒ 1/2×(x + y + z) (x²+ y²-2xy +y²+ z²-2yz+x²+z²-2xz)
[( a-b)²= a²+b²-2ab]
⇒ 1/2×(x + y + z) (2x²+ 2y²+2z²-2xy -2yz-2xz)
⇒ 1/2×(x + y + z) 2(x² + y²+ z² – xy – yz – xz)
=(x + y + z) (x² + y²+ z² – xy – yz – xz)
= x³+y³+z³-3xyz
= L.H.S
We know that,
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
L.H.S = R.H.S
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
================================================================
Hope this will help you....
R.H.S
⇒ 1/2×(x + y + z) (x²+ y²-2xy +y²+ z²-2yz+x²+z²-2xz)
[( a-b)²= a²+b²-2ab]
⇒ 1/2×(x + y + z) (2x²+ 2y²+2z²-2xy -2yz-2xz)
⇒ 1/2×(x + y + z) 2(x² + y²+ z² – xy – yz – xz)
=(x + y + z) (x² + y²+ z² – xy – yz – xz)
= x³+y³+z³-3xyz
= L.H.S
We know that,
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
L.H.S = R.H.S
[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]
================================================================
Hope this will help you....
Answered by
124
Answer:
R.H.S=1/2(x+y+z)(x-y)^2(y-z)^2(z-x)^2
(by using identity(a-b)^2=a^2-2ab+b^2)
1/2(x+y+z)(x^2-2xy+b^2)(y^2-2yz+b^2)(z^2-2zx+x^2)
Now, adding the like terms
1/2(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)
Taking 2 as a common factor
1/2(x+y+z)2(x^2+y^2+z^2-xy-yz-zy)
1/2/2(x+y+z)(x^2+y^2+z^2-xy-yz-yz)
(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
L.H.S=x^3+y^3+z^3-3xyz
we know that,
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
L.H.S=R.H.S
Hence, proved
Similar questions
Math,
8 months ago
Physics,
8 months ago
English,
8 months ago
Science,
1 year ago
Social Sciences,
1 year ago