Math, asked by sarvankumar869, 3 months ago

Verify the associative property of addition for the following rational numbers:

a = -7/15
b = 4/5
c = 2/3

Solve this equation with L.H.S = R.H.S

And I am don't ask sex ​

Answers

Answered by unknown3839
11

\large\bf{❥Answer}

First, let's understand what is the associative property of addition (in rational numbers)

\small\sf{The \:associative \:property \:states\: that\: if \: \frac{p}{q} ,\:  \frac{r}{s}  and \:  \frac{t}{u} are \: three \: ration \: numbers \: then: }

\sf{( \frac{p}{q}  +  \frac{r}{s} ) +  \frac{t}{u} } =  \frac{p}{q}   +  ( \frac{r}{s}  +  \frac{t}{u} )

Here,

The three rational numbers are :

 \sf{ \frac{ - 7}{15 } \: ,  \frac{4}{5}  \: and \:  \frac{2}{3} }

Therefore,

( \frac{ - 7}{15}  +  \frac{4}{5} ) +  \frac{2}{3}  =   \frac{ - 7}{15} +  ( \frac{4}{5} +   \frac{2}{3})

Now, lets verify it !

\small\bf{Let  \:  (\frac{ - 7}{15}  +  \frac{4}{5}  )+  \frac{2}{3} \:  be \:the \:  LHS}

\small\bf{ \: and \:  \frac{ - 7}{15} ( \frac{4}{5}  +  \frac{2}{3}) \: be \: the \: RHS}

\small\bf\red{Lets\:do\:it\:mate!}

LHS:

(  \frac{ - 7}{15}  +  \frac{4}{5} ) +  \frac{2}{3}  \\  = (  \frac{ - 7 + 12}{15}) +  \frac{2}{3}   \\  =  \frac{5}{15}  +  \frac{2}{3}  \\  =  \frac{5 + 10}{15}  \\  \frac{15}{15}  \\  = 1

Therefore, LHS = 1

RHS:

 - \frac{ - 7}{15} +  ( \frac{4}{5}  +  \frac{2}{3} ) \\  =   \frac{ - 7}{15}  + ( \frac{12 + 10}{15} ) \\  \frac{ - 7}{15}  +  \frac{22}{15}  \\  \frac{15}{15}  \\  = 1

Therefore, RHS = 1

Hence, verified !!!

\small\bf\purple{Hope\:it\:helps\:uh\::)}

Similar questions