Math, asked by sanjibmishra97451, 5 months ago

verify the distributive property of a*(b+c)=a*b+a*c (LHS=RHS)​

Attachments:

Answers

Answered by prabhas24480
3

Answer:    

Answer:     a= -2/3 , b= 3/4 , c= -6/7

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21  

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21   =>  (-42 + 48)/ 84                             ..........LCM of 12 and 21 is 84

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21   =>  (-42 + 48)/ 84                             ..........LCM of 12 and 21 is 84=>  6/84 = 2/28 =1/14

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21   =>  (-42 + 48)/ 84                             ..........LCM of 12 and 21 is 84=>  6/84 = 2/28 =1/14LHS=RHS

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21   =>  (-42 + 48)/ 84                             ..........LCM of 12 and 21 is 84=>  6/84 = 2/28 =1/14LHS=RHSHence proved

Answer:     a= -2/3 , b= 3/4 , c= -6/7 So according to property :ax(b+c)=(axb)+(axc)LHS-2/3 x( 3/4+(-6/7))=> -2/3 x ( (21 -24) /28)                 ........LCM of 4 and 7 is 28 => -2/3 x -3/28 => 6/84 = 2/28 =1/14 RHS(-2/3 x 3/4)+ ( -2/3 x -6/7)=> -6/12 + 12/ 21   =>  (-42 + 48)/ 84                             ..........LCM of 12 and 21 is 84=>  6/84 = 2/28 =1/14LHS=RHSHence proved Hope it helps !

Similar questions