Verify the property ax(b+c)=(axb)+(axc) by taking:
a=-2, b=(9/5), c=(-2/15)
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
ax(b+c)=(axb)+(axc)
-2x(⁹/₅ - ²/₁₅) = (-2(⁹/₅)x)+(-2(- ²/₁₅)x)
(-¹⁸/₅ + ⁴/₁₅)x = (-¹⁸/₅)x + (⁴/₁₅)x
(-⁵⁴/₁₅ + ⁴/₁₅)x = (-⁵⁴/₁₅ + ⁴/₁₅)x
(-⁵⁰/₁₅)x = (-⁵⁰/₁₅)x
Therefore x = 1
Check : ax(b+c)=(axb)+(axc)
-2(1)(⁹/₅ - ²/₁₅) = (-2(1)(⁹/₅))+(-2(1)(-²/₁₅))
(-¹⁸/₅ + ⁴/₁₅) = (-¹⁸/₅)x + (⁴/₁₅)
(-⁵⁴/₁₅ + ⁴/₁₅) = (-⁵⁴/₁₅ + ⁴/₁₅)
(-⁵⁰/₁₅) = (-⁵⁰/₁₅)
Similar questions