Math, asked by vg3301, 1 year ago

verify this equation

Attachments:

Answers

Answered by Aashish2503
1
First We take R.H.S & use the Formula [( a-b)²= a²+b²-2ab] & simplify it then R.H.S becomes equal to L.H.S


R.H.S

⇒ 1/2×(x + y + z) (x²+ y²-2xy +y²+ z²-2yz+x²+z²-2xz)

[( a-b)²= a²+b²-2ab]

⇒ 1/2×(x + y + z) (2x²+ 2y²+2z²-2xy -2yz-2xz)

⇒ 1/2×(x + y + z) 2(x² + y²+ z² – xy – yz – xz)

=(x + y + z) (x² + y²+ z² – xy – yz – xz)

= x³+y³+z³-3xyz
= L.H.S

We know that,

[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]

L.H.S = R.H.S

[x³+ y³ + z³– 3xyz = (x + y + z)(x²+ y² + z² – xy – yz – xz)]

================================================================

Hope this will help you....

Similar questions