Verify whether 5 and 2 are the zeroes of the polynomial 2x2 -5x
Answers
Step-by-step explanation:
Polynomial p(x) = 2x^3 - 11x^2 + 17x - 6p(x)=2x
3
−11x
2
+17x−6
To find : Verify whether 2, 3 and 1/2 are the zeroes of the polynomial ?
Solution :
Substitute the value of zeros in polynomial if it equate to zero then it is verified.
Put x=2,
p(2) = 2(2)^3 - 11(2)^2 + 17(2) - 6p(2)=2(2)
3
−11(2)
2
+17(2)−6
p(2) =16 - 44+34- 6p(2)=16−44+34−6
p(2) =0p(2)=0
Put x=3,
p(3) = 2(3)^3 - 11(3)^2 + 17(3) - 6p(3)=2(3)
3
−11(3)
2
+17(3)−6
p(3) =54-99+51- 6p(3)=54−99+51−6
p(3) =0p(3)=0
Put x=\frac{1}{2}x=
2
1
,
p(\frac{1}{2}) = 2(\frac{1}{2})^3 - 11(\frac{1}{2})^2 + 17(\frac{1}{2}) - 6p(
2
1
)=2(
2
1
)
3
−11(
2
1
)
2
+17(
2
1
)−6
p(\frac{1}{2}) =\frac{1}{4}-\frac{11}{4}+\frac{17}{2}- 6p(
2
1
)=
4
1
−
4
11
+
2
17
−6
p(\frac{1}{2}) =0p(
2
1
)=0
Given
Polinomial=2x²-5x
To Find
- Zero's of the polynomial
Solution
☞2x²-5x=0
☞2x²=5x
☞x²=
☞x=
Hope it helps you...