Math, asked by saanvi83, 1 year ago

Verify whether the operation * defined on Q by a * b = ab/4 is associative or not.

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{On\;Q,\;a\,*\,b=\dfrac{ab}{4}}

\underline{\textbf{To verify:}}

\textsf{Whether * is associative or not}

\underline{\textbf{Solution:}}

\underline{\textbf{Associative propterty:}}

A binary operation * on S is said to be associative if

\boxed{\mathsf{(a*b)*c=a*(b*c)}} for all \mathsf{\;a,b,c\;\in\;S}

\mathsf{Let\;a,b,c\;\in\;Q}

\mathsf{Consider,}

\mathsf{(a*b)*c=\left(\dfrac{ab}{4}\right)*c}

\mathsf{(a*b)*c=\dfrac{\left(\dfrac{ab}{4}\right)c}{4}}

\mathsf{(a*b)*c=\dfrac{abc}{16}}---------(1)

\mathsf{a*(b*c)=a*\left(\dfrac{bc}{4}\right)}

\mathsf{a*(b*c)=\dfrac{a\left(\dfrac{bc}{4}\right)}{4}}

\mathsf{a*(b*c)=\dfrac{abc}{16}}--------(2)

\textsf{From (1) and (2), we get}

\mathsf{(a*b)*c=a*(b*c)}

\therefore\;\textsf{* is associative}

Similar questions