Math, asked by harshakfreefire, 4 months ago

verify whether the points (3,-2,4),(1,0,-2)and (-1,2,-8) are collinear ​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Points are (3,-2,4), (1,0,-2) and (-1,2,-8)}

\textbf{To check:}

\textsf{whether the given points are collinear or not}

\textbf{Solution:}

\textsf{First we find, equation of line joining (3,-2,4) and (1,0,-2)}

\mathsf{\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}}

\mathsf{\dfrac{x-3}{1-3}=\dfrac{y+2}{0+2}=\dfrac{z-4}{-2-4}}

\mathsf{\dfrac{x-3}{-2}=\dfrac{y+2}{2}=\dfrac{z-4}{-6}}

\mathsf{Put\;(x,y,z)=(-1,2,-8)}

\mathsf{\dfrac{-1-3}{-2}=\dfrac{2+2}{2}=\dfrac{-8-4}{-6}}

\mathsf{\dfrac{-4}{-2}=\dfrac{4}{2}=\dfrac{-12}{-6}}

\mathsf{2=2=2}

\textsf{The equation is satisfied}

\therefore\textsf{The third point lies on the line joininig of the first two points}

\textsf{Hence, the given 3 points are collinear}

Answered by mahek77777
21

\textbf{Given:}

\textsf{Points are (3,-2,4), (1,0,-2) and (-1,2,-8)}

\textbf{To check:}

\textsf{whether the given points are collinear or not}

\textbf{Solution:}

\textsf{First we find, equation of line joining (3,-2,4) and (1,0,-2)}

\mathsf{\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}}

\mathsf{\dfrac{x-3}{1-3}=\dfrac{y+2}{0+2}=\dfrac{z-4}{-2-4}}

\mathsf{\dfrac{x-3}{-2}=\dfrac{y+2}{2}=\dfrac{z-4}{-6}}

\mathsf{Put\;(x,y,z)=(-1,2,-8)}

\mathsf{\dfrac{-1-3}{-2}=\dfrac{2+2}{2}=\dfrac{-8-4}{-6}}

\mathsf{\dfrac{-4}{-2}=\dfrac{4}{2}=\dfrac{-12}{-6}}

\mathsf{2=2=2}

\textsf{The equation is satisfied}

\therefore\textsf{The third point lies on the line joininig of the first two points}

\textsf{Hence, the given 3 points are collinear}

Similar questions