Math, asked by deepikamalhotra21, 3 months ago

verify whether they are perfect square or not 625​

Answers

Answered by sweetyheree
5

625 can be written as 25×25

 \sqrt{625 }  =  \sqrt{25 \times 25} =  \sqrt{ {25}^{2} }  = 25

so it is a perfect square

Answered by TwilightShine
12

Answer :-

  • 625 is a perfect square.

To find :-

  • Whether 625 is a perfect square or not.

Step-by-step explanation :-

  • Let's use the prime factorisation method for finding out whether 625 is a perfect square or not.

Prime factorisation of 625 :-

\begin{array}{c | c} \underline{5} &  \underline{625}  \\  \underline5& \underline{125} \\  \underline5& \underline{ \:  \: 25} \\  \underline{5}& \underline{ \:  \:  \:  \: 5} \\ & \:  \:  \:  \: 1\end{array}

Now,

 \sf625 = 5 \times 5 \times 5 \times 5

Forming pairs of 2 equal prime factors,

 \sf625 =  \underbrace{5 \times 5} \times  \underbrace{5 \times 5}

Conclusion :-

  • 625 can be expressed as the product of pairs of equal prime factors,

Therefore :-

  • 625 is a perfect square.

-----------------------------------------------------------

Know more :-

  • Now, let's find out the number whose square is 625.

Calculations :-

The given number is 625.

 \rm 625 = \underbrace{5 \times 5} \times \underbrace{5 \times 5}

 \rm 625 = (5^2) \times (5^2)

 \rm 625 = (5 \times 5)^2

 \rm 625 = (25)^2

  • Hence, 25 is the number whose square is 625.

________________________________

Similar questions