Math, asked by LinealMarsh, 8 months ago

Verify : x^3+y^3=(x+y)(x^2-xy+y^2)

Answers

Answered by redracoon
0

Answer:

R.H.S => (x+y) ( x2 - xy + y2)

=> x3 - x2y + xy2 + x2y - xy2 + y3

             

             {On multiplying x3 + y3 with (x+y) ( x2 - xy + y2)}

=> [x3 + y3] + ( -x2y + x2y) + ( xy2 - xy2)

=>  x3 + y3

Since R.H.S = L.H.S,

That is x3 + y3 = x3 + y3

Hence, verified that

Hence, verified that x3 + y3 = (x+y) ( x2 - xy + y2)

tq

Answered by babujrt123
0

R.H.S= (x+y) ( x^2- xy +y^2)

=x^3 -x^2y+ xy^2 +x^2y - xy^2 + y^3

= x^3+y^3= R.H.S

=

Step-by-step explanation:

Similar questions