Math, asked by Miracle901, 3 months ago

Verify : x³ + y³ = (x + y)(x² - xy + y²)

And on this basis simplify :

27y³ + 125z³​

Answers

Answered by Truebrainlian9899
66

Solution :

 \:

  • Verify : x³ + y³ = (x + y)(x² - xy + y²)

 \:

☞︎︎︎ x³ + y³ = x(x² - xy + y²) + y(x² - xy + y²)

 \:

  • Distributive Property

 \:

⟹ x³ + y³ = ( x³ - x²y + xy²) + (yx² - xy² + y³)

 \:

  • Cancel the like terms with opposite sign..

 \:

 \rm = ( x³ \cancel{ - x²y} + xy²) + ( \cancel{x²y} - xy² + y³)

 \:

 \:

 \rm = ( x³ { } + \cancel{ xy²}) + ( {} \cancel{  - xy²} + y³)

 \:

☞︎︎︎ x³ + y³ = x³ + y³

 \:

☆ Now :

 \:

i) 27y³ + 125z³

< Simplify = Factorise >

 \:

☞︎︎︎ Using Identity-

x³ + y³ = ( x³ - x²y + xy²) + (yx² - xy² + y³)

 \:

⟹ 27y³ + 125z³ = (3y)³ + (5z)³

 \:

  • a = 3y

  • b = 5z

 \:

⟹ (3y)³ + (5z)³ = (3y + 5z) [(3y)² - (3y)(5z) + (5z)²]

 \:

= (3y + 5z)(9y² - 15yz + 25z²)

  • hence simplified
Similar questions