(vi) 2 sin 135/2 °
cos 45/2°
Answers
Answered by
1
Answer
Assertion is true as
x=sin(α−β)sin(γ−β)=(sinαcosβ−cosαsinbeta)(sinγcosδ−cosγsinδ)
=sinαcosβsinγcosδ−sinαcosβcosγsinδ−cosαsinβsinγcosγ+cosαsinβcosγsinδ
y=sin(β−γ)sin(α−δ)=(sinβcosγ−cosβsinγ)(sinαcosδ−cosαsinγ)
=sinαsinβcosγcosδ−cosαsinβcosγsinδ−sinαcosβsinγcosδ+cosαcosβsinγsinδ
z=sin(γ−α)sin(β−γ)=(sinγcosα−cosγsinα)(sinβcosδ−cosβsinδ)
=cosαsinβsinγcosδ−cosαcosβsinγsinδ−sinαsinβcosγcosδ+sinαcosβcosγsinδ
x+y+z=0
Reason is false as
2sinAsinB=cos(A−B)−cos(A+B)
Step-by-step explanation:
Mark me as a brainliest and follow me..
Similar questions