Math, asked by chaudhurimoumeeta, 9 months ago

(viii) A perpendicular AD is drawn on the chord BC of the circle at the point A on its circumference. If AE is the diameter of the circle, prove that ΔBAD~=ΔEAC.

Answers

Answered by Anonymous
0

\Large{\underline{\underline{\bf{Solution :}}}}

\rule{200}{2}

Given :

A perpendicular AD is drawn on the chord BC of the circle at the point A on its circumference. If AE is the diameter of the circle, prove that ΔBAD~=ΔACD.

\rule{200}{1}

To Prove :

We have to prove that ∆BAD \cong ∆ACD

\rule{200}{1}

Proof :

In ∆ BAD and ∆ ACD

\sf{\angle BAD = \angle DAC \: \: \: \: \: \: \: (\because \: perpendicular)} \\ \\ \sf{BD = CD \: \: \: \: \: \: \: (Tangent)} \\ \\ \sf{AD = AD \: \: \: \: \: \: \: (Common)} \\ \\ \sf{\therefore \: \triangle BAD \: \cong \: \triangle ACD}

Hence proved

Attachments:
Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{A  \: perpendicular  \: AD \:  is  \: drawn  \: on \:  the  \: chord  \:  BC}  \\ \sf\red{of  \: the  \:  \: circle  \: at  \:  the  \: point \:  A  \: on  \: its  \: circumference. } \\  \sf\red{  If  \: AE \:  is \:  the  \:  \: diameter \:  of  \: thecircle, \:  prove  \: that \: } \\  \sf\red{.} \\   \\ \sf\blue{we \: have \: to \: prove \: that \: ΔBAD \congΔACD} \\  \\  \sf\pink{} \\  \\ \sf\pink{now \: ΔBAD  \: and \: ΔACD} \\  \\ \sf\green{ \angle \: BAD =   \angle DCA( \because \: parpenicular)} \\  \\ \sf\orange{AD = AD(common)} \\  \\ \sf\blue{BD =CD(tangent)} \\  \\ \sf\pink{ \underline{ \therefore \: ΔBAD \congΔACD}} \\ \\  \\  \\    \sf\purple{ \underline{proved}}

\large\boxed{ \fcolorbox{green}{yellow}{hope \: it \: help \: you}}

Similar questions